On-line estimation of biomass concentration using a neural network and information about metabolic state
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu srovnávací studie, hodnotící studie, časopisecké články, validační studie
- MeSH
- algoritmy * MeSH
- biologické modely * MeSH
- biomasa MeSH
- energetický metabolismus fyziologie MeSH
- neuronové sítě * MeSH
- online systémy MeSH
- počítačová simulace MeSH
- proliferace buněk MeSH
- Saccharomyces cerevisiae růst a vývoj metabolismus MeSH
- spotřeba kyslíku fyziologie MeSH
- ukládání a vyhledávání informací metody MeSH
- Publikační typ
- časopisecké články MeSH
- hodnotící studie MeSH
- srovnávací studie MeSH
- validační studie MeSH
This paper deals with the design of a neural network-based biomass concentration estimation system. This system is enhanced by the incorporation of information about the actual metabolism of the microorganism cultivated, which is taken from an on-line knowledge-based system. Two different design approaches have been investigated using the fed-batch cultivation of baker's yeast as the model process. In the first, metabolic state (MS) data were passed as additional input to the neural network; in the second, these data were used to select a neural network suitable for the specific MS. Two neural network types--feed-forward (Levenberg-Marquardt) and cascade correlation--were applied to this system and tested, and the performances of these neural networks were compared.
Citace poskytuje Crossref.org