Role of energy charge and AMP-activated protein kinase in adipocytes in the control of body fat stores
International journal of obesity and related metabolic disorders | Int J Obes Relat Metab Disord
Source
Language English Country Great Britain, England Media print
Document type Journal Article, Research Support, Non-U.S. Gov't, Review
PubMed
15592485
DOI
10.1038/sj.ijo.0802855
PII: 0802855
Knihovny.cz E-resources
- MeSH
- Models, Biological MeSH
- Choristoma metabolism MeSH
- Energy Metabolism physiology MeSH
- Ion Channels MeSH
- Humans MeSH
- Membrane Proteins metabolism MeSH
- Mitochondrial Proteins MeSH
- Mitochondria metabolism MeSH
- Multienzyme Complexes metabolism MeSH
- Mice, Transgenic MeSH
- Mice MeSH
- Obesity metabolism MeSH
- Protein Serine-Threonine Kinases metabolism MeSH
- AMP-Activated Protein Kinases MeSH
- Carrier Proteins metabolism MeSH
- Adipose Tissue metabolism MeSH
- Adipocytes metabolism MeSH
- Uncoupling Protein 1 MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Review MeSH
- Names of Substances
- Ion Channels MeSH
- Membrane Proteins MeSH
- Mitochondrial Proteins MeSH
- Multienzyme Complexes MeSH
- Protein Serine-Threonine Kinases MeSH
- AMP-Activated Protein Kinases MeSH
- Carrier Proteins MeSH
- UCP1 protein, human MeSH Browser
- Ucp1 protein, mouse MeSH Browser
- Uncoupling Protein 1 MeSH
As indicated by in vitro studies, both lipogenesis and lipolysis in adipocytes depend on the cellular ATP levels. Ectopic expression of mitochondrial uncoupling protein 1 (UCP1) in the white adipose tissue of the aP2-Ucp1 transgenic mice reduced obesity induced by genetic or dietary manipulations. Furthermore, respiratory uncoupling lowered the cellular energy charge in adipocytes, while the synthesis of fatty acids (FA) was inhibited and their oxidation increased. Importantly, the complex metabolic changes triggered by ectopic UCP1 were associated with the activation of AMP-activated protein kinase (AMPK), a metabolic master switch, in adipocytes. Effects of several typical treatments that reduce adiposity, such as administration of leptin, beta-adrenoceptor agonists, bezafibrate, dietary n-3 polyunsaturated FA or fasting, can be compared with a phenotype of the aP2-Ucp1 mice. These situations generally lead to the upregulation of mitochondrial UCPs and suppression of the cellular energy charge and FA synthesis in adipocytes. On the other hand, FA oxidation is increased. Moreover, it has been shown that AMPK in adipocytes can be activated by adipocyte-derived hormones leptin and adiponectin, and also by insulin-sensitizes thiazolidinediones. Thus, it is evident that metabolism of adipose tissue itself is important for the control of body fat content and that the cellular energy charge and AMPK are involved in the control of lipid metabolism in adipocytes. The reciprocal link between synthesis and oxidation of FA in adipocytes represents a prospective target for the new treatment strategies aimed at reducing obesity.
References provided by Crossref.org
The Pancreatic β-Cell: The Perfect Redox System
Fatty Acid-Stimulated Insulin Secretion vs. Lipotoxicity