Potential virulence-associated properties of Plesiomonas shigelloides strains
Language English Country United States Media print
Document type Journal Article
PubMed
15702543
DOI
10.1007/bf02931531
Knihovny.cz E-resources
- MeSH
- Bacterial Adhesion MeSH
- Species Specificity MeSH
- 4-Butyrolactone analogs & derivatives metabolism MeSH
- Gram-Negative Bacterial Infections microbiology MeSH
- Hemolysin Proteins biosynthesis MeSH
- Histidine Decarboxylase biosynthesis MeSH
- Humans MeSH
- Lipase biosynthesis MeSH
- Water Microbiology MeSH
- Pancreatic Elastase biosynthesis MeSH
- Plesiomonas classification isolation & purification metabolism pathogenicity MeSH
- Serotyping MeSH
- Virulence MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- 4-Butyrolactone MeSH
- Hemolysin Proteins MeSH
- Histidine Decarboxylase MeSH
- homoserine lactone MeSH Browser
- Lipase MeSH
- Pancreatic Elastase MeSH
Serotyping and some potential virulence-associated markers were investigated in Plesiomonas shigelloides strains isolated from humans, animals and aquatic environments. Surface properties of these strains were evaluated using Congo red binding, salt-aggregation test, bacterial adherence to xylene and motility. Production of pancreatic elastase, proteinase (consistent with subtilisin Carlsberg), triacylglycerol lipase, histidine decarboxylase and beta-hemolysin was also determined. In addition, detection of signal molecules such as C4-C8 unsubstituted N-acylhomoserine lactones (AHLs) was performed. The serological typing of the P. shigelloides strains showed that the isolates belonged to 13 different serovars. The majority of the strains were hydrophobic and motile. The strains produced low levels of elastase, proteinase and histidine decarboxylase whereas triacylglycerol lipase activity was relatively high. Only 23.3 % of the strains produced hemolysin. The AHLs signal molecules were not detected. P. shigelloides strains were able to produce a variety of potential virulence markers which may be involved in the pathogenesis of Plesiomonas-associated infections.
See more in PubMed
J Med Microbiol. 1992 Nov;37(5):335-40 PubMed
Infect Immun. 1982 Nov;38(2):716-23 PubMed
Microbios. 1996;87(350):21-30 PubMed
Mol Microbiol. 1995 Jan;15(1):87-95 PubMed
J Food Prot. 1999 Dec;62(12):1475-7 PubMed
Annu Rev Microbiol. 1996;50:727-51 PubMed
Rev Infect Dis. 1988 Mar-Apr;10(2):303-16 PubMed
Jpn J Med Sci Biol. 1978 Apr;31(2):135-42 PubMed
J Clin Microbiol. 1988 May;26(5):979-84 PubMed
Comp Immunol Microbiol Infect Dis. 2001 Jan;24(1):39-55 PubMed
J Clin Microbiol. 1988 Jul;26(7):1343-8 PubMed
Acta Pathol Microbiol Scand. 1968;72(2):263-76 PubMed
J Infect. 1991 Jul;23(1):89-92 PubMed
Infect Immun. 1978 Nov;22(2):462-72 PubMed
J Food Prot. 1985 May;48(5):449-457 PubMed
Chemotherapy. 1995 Jan-Feb;41(1):50-8 PubMed
Appl Environ Microbiol. 1987 Aug;53(8):1893-7 PubMed
Int J Food Microbiol. 1996 Jan;28(3):411-8 PubMed
Folia Microbiol (Praha). 2002;47(5):565-71 PubMed
Mol Microbiol. 1998 Oct;30(2):295-304 PubMed
Scand J Infect Dis Suppl. 1980;Suppl 24:135-40 PubMed
Zentralbl Bakteriol. 1994 Jun;281(1):38-44 PubMed
J Basic Microbiol. 1986;26(5):283-7 PubMed
Antimicrob Agents Chemother. 1989 Jan;33(1):41-7 PubMed
Folia Microbiol (Praha). 2003;48(6):794-8 PubMed
Folia Microbiol (Praha). 2003;48(5):659-63 PubMed
Kansenshogaku Zasshi. 1996 Jan;70(1):29-41 PubMed
Biochim Biophys Acta. 1981 Nov 5;677(3-4):471-6 PubMed
J Appl Microbiol. 2001 Mar;90(3):482-7 PubMed
Comp Immunol Microbiol Infect Dis. 2000 Jan;23(1):45-51 PubMed
J Microbiol Methods. 2001 Apr;44(3):239-51 PubMed
J Clin Microbiol. 1993 May;31(5):1206-8 PubMed
Eur J Clin Microbiol Infect Dis. 1988 Aug;7(4):505-10 PubMed
Pediatr Hematol Oncol. 1996 May-Jun;13(3):265-9 PubMed
Infect Immun. 1984 Jan;43(1):397-401 PubMed
Appl Environ Microbiol. 1982 Aug;44(2):447-52 PubMed
Folia Microbiol (Praha). 2000;45(4):301-4 PubMed
Inhibition of mammalian cathepsins by Plesiomonas shigelloides