The shape of acetabular cartilage optimizes hip contact stress distribution

. 2005 Jul ; 207 (1) : 85-91.

Jazyk angličtina Země Anglie, Velká Británie Médium print

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid16011547

The biomechanical role of the horseshoe geometry of the acetabular cartilage is described using a three-dimensional mathematical model. It is shown that the acetabular fossa contributes to a more uniform articular contact stress distribution and a consequent decrease in the peak contact stress. Based on the results it is suggested that the characteristic horseshoe shape of the articular cartilage in the human acetabulum optimizes the contact stress distribution in the hip joint.

Zobrazit více v PubMed

Afoke NYP, Byers PD, Hutton WC. Contact pressures in the human hip joint. J Bone Joint Surg. 1987;69B:536–541. PubMed

Bergmann G, Graichen F, Rohlmann A. Hip contact force and gait patterns from routine activities. J Biomech. 2001;26:859–871. PubMed

Brand RA, Iglič A, Kralj-Iglič V. Contact stress in the human hip: implication for disease and treatment. Hip Int. 2001;11:117–126.

Brinckmann P, Frobin W, Hierholzer E. Stress on the articular surface of the hip joint in healthy adults and persons with idiopathic osteoarthrosis of the hip joint. J Biomech. 1981;14:149–153. PubMed

Brown TD, Shaw TD. In vitro contact stress distributions in the natural human hip. J Biomech. 1983;16:373–384. PubMed

Butt HJ, Graf K, Kapl M. Physics and Chemistry of Interfaces. Weinheim: Wiley-VCH; 2003.

Daniel M, Antolič V, Iglič A, Kralj-Iglič V. Determination of contact hip stress from nomograms based on mathematical model. Med Eng Phys. 2001;23:347–357. PubMed

Daniel M, Kralj-Iglič V, Iglič A, Sochor M. Hypothesis of the regulation of the cartilage activity by mechanical loading. Med Hypotheses. 2003;60:936–937. PubMed

Genda E, Iwasaki N, Li G, MacWiliams BA, Barrance PJ, Chao EYS. Normal hip joint contact pressure distribution in single-leg standing – effect of gender and anatomic parameters. J Biomech. 2001;34:895–905. PubMed

Hadley NA, Brown TD, Weinstein SL. The effects of contact stress pressure elevations and aseptic necrosis in the long-term outcome of congenital hip dislocation. J Orthop Res. 1990;8:504–513. PubMed

Hodge WA, Carlson KL, Fijan RS, et al. Contact pressures from an instrumented hip endoprostheses. J Bone Joint Surg. 1989;71A:1378–1386. PubMed

Iglič A, Kralj-Iglič V, Daniel M, Maček-Lebar A. Computer determination of contact stress distribution and the size of the weight-bearing area in the human hip joint. Comput Meth Biomech Biomed Eng. 2002;5:185–192. PubMed

Ipavec M, Brand RA, Pedersen DR, et al. Mathematical modelling of stress in the hip during gait. J Biomech. 1999;32:1229–1235. PubMed

Legal H. Introduction to the biomechanics of the hip. In: Tönis D, editor. Congenital Dysplasia and Dyslocation of the Hip. Berlin: Springer-Verlag; 1987. pp. 26–58.

Mavčič B, Pompe B, Daniel M, Iglič A, Kralj-Iglič V. Mathematical estimation of stress distribution in normal and dysplastic human hip. J Orthop Res. 2002;20:1025–1030. PubMed

Mow VC, Proctor CS, Kelly MA. Biomechanics of articular cartilage. In: Nordin M, Frankel VH, editors. Basic Biomechanics of the Musculo-Skeletal System. Philadelphia: Lea & Fibiger; 1989. pp. 31–58.

Nordin M, Frankel VH. Basic Biomechanics of the Musculo-Skeletal System. Philadelphia: Lea & Fibiger; 1989. pp. 31–151.

Pauwels F. Biomechanics of the Normal and Diseased Hips. Berlin: Springer-Verlag; 1976.

Petersilge CA. Chronic adult hip pain: MR arthrography of the hip. Radiographics. 2000;20:S43–S52. PubMed

Pompe B, Daniel M, Sochor M, Vengust R, Kralj-Iglič V, Iglič A. Gradient of contact stress in normal and dysplastic human hip. Med Eng Phys. 2003;25:379–385. PubMed

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...