Multiple tubulin forms in ciliated protozoan Tetrahymena and Paramecium species
Jazyk angličtina Země Rakousko Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem, přehledy
- MeSH
- cilie chemie MeSH
- mikrotubuly chemie MeSH
- Paramecium chemie cytologie genetika MeSH
- posttranslační úpravy proteinů MeSH
- Tetrahymena chemie cytologie genetika MeSH
- tubulin chemie genetika MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- tubulin MeSH
Tetrahymena and Paramecium species are widely used representatives of the phylum Ciliata. Ciliates are particularly suitable model organisms for studying the functional heterogeneity of tubulins, since they provide a wide range of different microtubular structures in a single cell. Sequencing projects of the genomes of members of these two genera are in progress. Nearly all members of the tubulin superfamily (alpha-, beta-, gamma-, delta-, epsilon-, eta-, theta-, iota-, and kappa-tubulins) have been identified in Paramecium tetraurelia. In Tetrahymena spp., the functional consequences of different posttranslational tubulin modifications (acetylation, tyrosination and detyrosination, phosphorylation, glutamylation, and glycylation) have been studied by different approaches. These model organisms provide the opportunity to determine the function of tubulins found in ciliates, as well as in humans, but absent in some other model organisms. They also give us an opportunity to explore the mechanisms underlying microtubule diversity. Here we review current knowledge concerning the diversity of microtubular structures, tubulin genes, and posttranslational modifications in Tetrahymena and Paramecium species.
Zobrazit více v PubMed
C R Trav Lab Carlsberg. 1966;35(7):119-41 PubMed
J Cell Biol. 1998 Dec 14;143(6):1575-89 PubMed
J Protozool. 1967 Nov;14(4):553-65 PubMed
Science. 1994 Dec 9;266(5191):1688-91 PubMed
Adv Space Res. 1996;17(6-7):11-20 PubMed
Biosystems. 1975 Nov;7(3-4):326-36 PubMed
Cell Motil Cytoskeleton. 1993;25(3):243-53 PubMed
J Cell Sci. 1974 May;14(3):611-31 PubMed
J Cell Biol. 1988 Dec;107(6 Pt 1):2259-69 PubMed
Biosystems. 1988;21(3-4):317-22 PubMed
Cell. 1984 Feb;36(2):441-5 PubMed
J Cell Sci. 1980 Aug;44:135-51 PubMed
Cell Motil Cytoskeleton. 2003 May;55(1):14-25 PubMed
J Eukaryot Microbiol. 2002 Jan-Feb;49(1):74-81 PubMed
Cell Motil Cytoskeleton. 1994;27(4):337-49 PubMed
Biol Cell. 2003 Jan-Feb;95(1):39-51 PubMed
Biol Cell. 2000 Dec;92(8-9):615-28 PubMed
Biochemistry. 1999 Mar 9;38(10):3133-9 PubMed
Cell Motil Cytoskeleton. 1993;25(2):158-70 PubMed
J Protozool. 1964 May;11:250-61 PubMed
Trends Cell Biol. 1993 Nov;3(11):409-12 PubMed
FEBS Lett. 1997 Dec 8;419(1):87-91 PubMed
Mol Cell Biol. 1992 Apr;12(4):1443-50 PubMed
J Biol Chem. 1996 Sep 6;271(36):22117-24 PubMed
Eur J Biochem. 1991 Jan 30;195(2):487-94 PubMed
J Biochem. 1989 Jun;105(6):858-60 PubMed
Mol Biol Cell. 2004 Sep;15(9):4136-47 PubMed
Science. 2005 Jun 17;308(5729):1758-62 PubMed
J Cell Biol. 1991 Apr;113(1):103-12 PubMed
J Cell Sci. 1985 Nov;79:237-46 PubMed
J Cell Sci. 1997 Feb;110 ( Pt 4):431-7 PubMed
Cell Motil Cytoskeleton. 1994;27(3):272-83 PubMed
Eukaryot Cell. 2004 Feb;3(1):212-20 PubMed
J Cell Biol. 2002 Sep 30;158(7):1183-93 PubMed
Cell. 2000 Jan 21;100(2):241-52 PubMed
Curr Biol. 1999 Jan 14;9(1):43-6 PubMed
Mol Biol Cell. 1998 Sep;9(9):2655-65 PubMed
J Cell Biol. 2002 Sep 30;158(7):1195-206 PubMed
Science. 1997 Jan 3;275(5296):70-3 PubMed
Curr Biol. 2000 Nov 16;10(22):1451-4 PubMed
Microbiol Rev. 1993 Dec;57(4):953-94 PubMed
Nature. 1984 Nov 15-21;312(5991):237-42 PubMed
Science. 1983 Oct 14;222(4620):181-4 PubMed
J Cell Biol. 1980 Mar;84(3):717-38 PubMed
Protist. 2003 Jul;154(2):193-209 PubMed
Nat Rev Mol Cell Biol. 2003 Dec;4(12):938-47 PubMed
J Cell Biol. 1990 Mar;110(3):703-14 PubMed
Curr Opin Microbiol. 2003 Dec;6(6):634-40 PubMed
Subcell Biochem. 1995;24:255-302 PubMed
J Cell Sci. 1999 Nov;112 ( Pt 21):3733-45 PubMed
Curr Biol. 2002 Feb 19;12(4):313-6 PubMed
Curr Biol. 2004 Aug 10;14(15):1397-404 PubMed
Proc Natl Acad Sci U S A. 1997 Feb 18;94(4):1310-5 PubMed
EMBO J. 1992 Oct;11(10):3713-9 PubMed
Org Biomol Chem. 2004 Aug 7;2(15):2153-60 PubMed
Mol Cell Biol. 1995 Sep;15(9):5173-9 PubMed
J Histochem Cytochem. 1999 Jul;47(7):841-54 PubMed
J Cell Sci. 1981 Oct;51:241-53 PubMed
J Biochem Biophys Methods. 1992 Jun;24(3-4):195-203 PubMed
J Biol Chem. 2005 Jan 7;280(1):596-606 PubMed
Exp Cell Res. 1986 Jan;162(1):86-96 PubMed
BMC Cell Biol. 2001;2:4 PubMed
J Mol Biol. 2002 Feb 22;316(3):817-28 PubMed
J Cell Biol. 1987 Mar;104(3):417-30 PubMed
J Cell Biol. 1985 Nov;101(5 Pt 1):1966-76 PubMed
J Biol Chem. 2001 Apr 20;276(16):12839-48 PubMed
Biol Cell. 1999 Dec;91(9):685-97 PubMed
Science. 1990 Jan 5;247(4938):83-5 PubMed
Eur J Biochem. 2000 Jun;267(11):3226-34 PubMed
Eur J Cell Biol. 1996 Aug;70(4):331-8 PubMed
J Cell Biol. 1980 Feb;84(2):364-80 PubMed
EMBO J. 2003 Mar 3;22(5):1168-79 PubMed
Biochim Biophys Acta. 2001 Nov 11;1522(1):9-21 PubMed
Eukaryot Cell. 2004 Oct;3(5):1217-26 PubMed
Nucleic Acids Res. 1988 Oct 25;16(20):9597-609 PubMed
J Cell Biol. 2000 May 29;149(5):1097-106 PubMed
J Cell Biol. 1976 Nov;71(2):589-605 PubMed
J Mol Biol. 1988 Aug 5;202(3):365-82 PubMed
Biol Cell. 1996;87(1-2):83-93 PubMed
Biol Cell. 1991;71(1-2):227-45 PubMed
J Cell Biol. 1995 Jun;129(5):1301-10 PubMed
FEBS Lett. 1998 Jun 16;429(3):399-402 PubMed