Local administration of 2% trimecaine affects the content of fucosylated glycoconjugates in goblet cells in rabbit tracheal epithelium
Jazyk angličtina Země Velká Británie, Anglie Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
16875493
PubMed Central
PMC2517373
DOI
10.1111/j.1365-2613.2006.00483.x
PII: IEP483
Knihovny.cz E-zdroje
- MeSH
- anestetika lokální aplikace a dávkování škodlivé účinky MeSH
- aplikace lokální MeSH
- fukosa metabolismus MeSH
- glykokonjugáty analýza metabolismus MeSH
- histocytochemie metody MeSH
- intratracheální anestezie škodlivé účinky MeSH
- králíci MeSH
- lektiny metabolismus MeSH
- pohárkové buňky chemie účinky léků metabolismus MeSH
- rozvrh dávkování léků MeSH
- trachea MeSH
- trimekain aplikace a dávkování škodlivé účinky MeSH
- zvířata MeSH
- Check Tag
- králíci MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- anestetika lokální MeSH
- fukosa MeSH
- glykokonjugáty MeSH
- lektiny MeSH
- trimekain MeSH
The proportion of fucosylated glycoconjugate-containing rabbit tracheal goblet cells after intratracheal application of trimecaine was studied to evaluate its possible unfavourable effects. This lapine model is comparable with diagnostic findings in humans because airway epithelia in humans and rabbits are similar; tracheal epithelium is also practically identical to bronchial epithelium in both species. Local trimecaine anaesthesia caused a proportional decrease in percentage of the tracheal goblet cells containing both alpha(1-2)- and alpha(1-6)-, alpha(1-3)- and alpha(1-4)-fucosylated glycoconjugates as revealed 10 min postexposure using lectin histochemistry. In previous studies, only mild ultrastructural damage to the airway's epithelium was revealed, but a conspicuous decrease in sialylated glycoconjugate-containing tracheal goblet cells and the dominance of acidic sulphated glycoconjugates were observed as after-effects of the same treatment. Glycoconjugate changes can influence the inner environment of airways (e.g. viscoelastic properties of the airways' mucus and mucosal barrier functions) and thus the patient's defence barriers in airways may be weakened. Concurrently, the histochemical properties of goblet cells can be altered in bronchoscopic specimens. Since trimecaine is widely used as local anaesthesia in airways in bronchoscopy, it is necessary to heed these aforementioned effects.
Zobrazit více v PubMed
Adam EC, Mitchell BS, Schumacher DU, Grant G, Schumacher U. Pseudomonas aeruginosa II lectin stops human ciliary beating: therapeutic implications of fucose. Am. J. Respir. Crit. Care Med. 1997;155:2102–2104. PubMed
Biol-N'Garagba M-C, Greco S, George P, Hugueny I, Louisot P. Polyamine participation in the maturation of glycoprotein fucosylation, but not sialylation, in rat small intestine. Pediatr. Res. 2002;51:625–634. PubMed
Blander JM, Visintin I, Janeway CA, Medzhitov R. α(1,3)-fucosyltransferase VII and α(2,3)-sialyltransferase IV are up-regulated in activated CD4 T cells and maintained after their differentiation into Th1 and migration into inflammatory sites. J. Immunol. 1999;163:3746–3752. PubMed
Castells MT, Ballesta J, Madrid JF, Avilés M, Martínez-Menárguez JA. Characterization of glycoconjugates in developing rat respiratory system by means of conventional and lectin histochemistry. Histochemistry. 1991;95:419–426. PubMed
Finkbeiner WE. Physiology and pathology of tracheobronchial glands. Respir. Physiol. 1999;118:77–83. PubMed
Freney M, Irth H, Lindberg H, et al. Rapid screening of airway secretion for fucose by parallel ligand-exchange chromatography with post-column derivatization and fluorescence detection. Chromatographia. 2001;54:439–445.
Gebert A, Posselt W. Glycoconjugate expression defines the origin and differentiation pathway of intestinal M-cells. J. Histochem. Cytochem. 1997;45:1341–1350. PubMed
Glick MC, Kothari VA, Liu A, Stoykova LI, Scanlin TF. Activity of fucosyltransferases and altered glycosylation in cystic fibrosis airway epithelial cells. Biochimie. 2001;83:743–747. PubMed
Ishihara Y. Inflammatory responses and mucus secretion in rats with acute bronchiolitis induced by nickel chloride. Inhalat. Toxicol. 2002;14:417–430. PubMed
Jeffery PK, Reid L. New observations of rat airway epithelium: a quantitative and electron microscopic study. J. Anat. 1975;120:295–320. PubMed PMC
Konrádová V. The ultrastructure of the tracheal epithelium in rabbit. Folia Morphol. 1966;14:210–214. PubMed
Konrádová V, Uhlík J, Vajner L, Zocová J. Vliv lokální anestezie na hodnocení ultrastrukturálních nález [Image: see text] v epitelu velkých bronch [Image: see text]. Otorinolaryngol (Prague) 1998;47:159–164.
López-Ferrer A, de Bolós C, Barranco C, et al. Role of fucosyltransferases in the association between apomucin and Lewis antigen expression in normal and malignant gastric epithelium. Gut. 2000;47:349–356. PubMed PMC
Majima Y, Harada T, Shimizu T, et al. Effect of biochemical components on rheologic properties of nasal mucus in chronic sinusitis. Am. J. Respir. Crit. Care Med. 1999;160:421–426. PubMed
Mariassy AT, Plopper CG, St George JA, Wilson DW. Tracheobronchial epithelium of the sheep: IV. Lectin histochemical characterization of secretory epithelial cells. Anat. Rec. 1988;222:49–59. PubMed
Mowry RW, Winkler CH. The coloration of acidic carbohydrates of bacteria and fungi in tissue sections with special reference to capsule of Cryptococcus neoformans, pneumococci, and staphylococci. Am. J. Pathol. 1956;32:628–629.
Otori A, Carlsöö B, Stierna P. Changes in glycoconjugate expression of the sinus mucosa during experimental sinusitis: a lectin histochemical study of the epithelium and goblet cell development. Acta Oto – Laryngologica. 1998;118:248–256. PubMed
Pack RJ, Al-Ugaily LH, Morris G, Widdicombe JG. The distribution and structure of cells in the tracheal epithelium of the mouse. Cell Tissue Res. 1980;208:65–84. PubMed
Pavelka M, Ronge HR, Stockinger G. Vergleichende Untersuchungen an Trachealepithel verschiedener Säuger. Acta Anat. 1976;94:262–282. PubMed
Rhodin JAG. Ultrastructure and function of the human tracheal mucosa. Am. Rev. Respir. Dis. 1966;93:1–15. PubMed
Robinson NP, Venning L, Kyle H, Widdicombe JG. Quantitation of the secretory cells of the ferret tracheobronchial tree. J. Anat. 1986;145:173–188. PubMed PMC
Sato M, Yonezawa S, Uehara H, Arita Y, Sato E, Muramatsu T. Differential distribution of receptors for two fucose-binding lectins in embryos and adult tissues of the mouse. Differentiation. 1986;30:211–219. PubMed
Spicer SS, Schulte BA. Diversity of cell glycoconjugates shown histochemically: a perspective. J. Histochem. Cytochem. 1992;40:1–38. PubMed
Spicer SS, Schulte BA, Thomopoulos GN. Histochemical properties of the respiratory tract epithelium in different species. Am. Rev. Respir. Dis. 1983;128:S20–S26. PubMed
Vajner L, Konrádová V, Uhlík J, Zocová J. The effect of local administration of 2% trimecaine on the glycoconjugate content of goblet cells in the rabbit tracheal epithelium. Sbor. lék. 2001;102:233–236. PubMed
Watson JHL, Brinkman GL. Electron microscopy of the epithelial cells of normal and bronchitic human bronchus. Am. Rev. Respir. Dis. 1964;90:851–866. PubMed