Proportional odds logistic regression--effective means of dealing with limited uncertainty in dichotomizing clinical outcomes
Jazyk angličtina Země Velká Británie, Anglie Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
16929469
DOI
10.1002/sim.2678
Knihovny.cz E-zdroje
- MeSH
- ateroskleróza diagnostické zobrazování MeSH
- cholesterol krev MeSH
- interpretace statistických dat * MeSH
- kouření MeSH
- krevní glukóza metabolismus MeSH
- lidé MeSH
- logistické modely * MeSH
- prediktivní hodnota testů MeSH
- statistické modely * MeSH
- ultrasonografie MeSH
- vápník krev MeSH
- Check Tag
- lidé MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Česká republika MeSH
- Názvy látek
- cholesterol MeSH
- krevní glukóza MeSH
- vápník MeSH
Classifying a measurable clinical outcome as a dichotomous variable often involves difficulty with borderline cases that could fairly be assigned either of the two binary class memberships. In such situations the indicated class membership is often highly subjective and subject to, for instance, a measurement error. In other situations the intermediate level of a three-level ordinal factor may sometimes be explicitly reserved for cases which could likely belong to either of the two binary classes. Such indefinite readings are often eliminated from the statistical analysis. In this article we review conceptual and methodological aspects of employing proportional odds logistic regression for a three level ordinal factor as a suitable alternative to ordinary logistic regression when dealing with limited uncertainty in classifying clinical outcome as a binary variable.
Citace poskytuje Crossref.org