Postnatal development of phospholipids and their fatty acid profile in rat heart
Jazyk angličtina Země Nizozemsko Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
- MeSH
- cholin metabolismus MeSH
- fosfatidylinositoly analýza metabolismus MeSH
- fosfatidylseriny analýza metabolismus MeSH
- fosfolipidy chemie metabolismus MeSH
- krysa rodu Rattus MeSH
- mastné kyseliny analýza metabolismus MeSH
- myokard chemie metabolismus MeSH
- plasmalogeny metabolismus MeSH
- potkani Wistar MeSH
- srdce růst a vývoj MeSH
- srdeční komory cytologie MeSH
- triglyceridy metabolismus MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- cholin MeSH
- fosfatidylinositoly MeSH
- fosfatidylseriny MeSH
- fosfolipidy MeSH
- mastné kyseliny MeSH
- plasmalogeny MeSH
- triglyceridy MeSH
The aim of this study was to determine the concentration of phospholipids (PL), plasmalogen components of choline (PC) and ethanolamine (PE) phosphoglycerides (PLPC, PLPE) and fatty acid profile of PL and triacylglycerols (TAG) in developing rat left ventricular myocardium between postnatal day (d) 2 and 100. The steepest increase of total PL (TPL) concentration occurs between d2 and d5, followed by a further slower increase between d20 and d40. Similar developmental changes were observed in PC and PE. The PLPE concentration rises by d10, whereas PLPC does not change during the whole period investigated, except for the transient decline on d5. The concentration of diphosphatidylglycerol (DPG) increases by d60; the steepest rise occurs between d20 and d40. Phosphatidylinositol (PI) concentration rises only by d5. The concentration of phosphatidylserine (PS) decreases between d5 and d10 and then it does not change. Sphingomyelin (SM) concentration is maintained till d10, it declines on d20 and does not change thereafter. The proportion of saturated fatty acids (SFA) increases by d5 in PC, PE, PS and TAG, and by d10 in DPG and PI. After d20 the SFA proportion gradually decline in all lipids. Monounsaturated FA (MUFA) proportion decreases in PC, PE, PI and PS from d2 till d10, and in the weaning period it tends to rise again. In contrast, in DPG and TAG the proportion of MUFA declines during the whole postnatal period. N-6 polyunsaturated FA (PUFA) decrease in all PL by d20 and rise again thereafter; in TAG they decline between d2 and d10 and return to the initial level by d100. N-3 PUFA increase in all PL during the suckling period and decline after weaning; in TAG they increase only by d5 and then they decline. This remodeling of myocardial PL and TAG composition during postnatal development may affect membrane properties and contribute to developmental changes in the function of membrane proteins and cell signaling.
Zobrazit více v PubMed
Acta Endocrinol (Copenh). 1976 Dec;83(4):752-62 PubMed
Cell Biochem Biophys. 2005;43(1):105-17 PubMed
FEBS Lett. 1991 Mar 25;280(2):393-6 PubMed
Lipids. 1971 Aug;6(8):567-75 PubMed
Annu Rev Biochem. 1987;56:159-93 PubMed
Biochemistry. 1984 Jan 3;23(1):158-65 PubMed
Physiol Rev. 1999 Jul;79(3):635-59 PubMed
Can J Biochem. 1975 Jun;53(6):698-705 PubMed
Am J Physiol. 1992 Jan;262(1 Pt 2):R8-13 PubMed
Chem Phys Lipids. 2003 Nov;126(1):1-27 PubMed
Recent Adv Stud Cardiac Struct Metab. 1972;1:136-46 PubMed
Circ Res. 1991 Mar;68(3):662-73 PubMed
J Mol Cell Cardiol. 1999 Apr;31(4):761-72 PubMed
FEBS Lett. 1998 Mar 13;424(3):155-8 PubMed
J Ultrastruct Res. 1976 Apr;55(1):31-41 PubMed
Lipids. 1992 Feb;27(2):104-10 PubMed
Lipids. 1970 May;5(5):494-6 PubMed
Am J Physiol. 1990 Jan;258(1 Pt 1):C30-6 PubMed
J Mol Cell Cardiol. 2003 Mar;35(3):321-30 PubMed
Am J Physiol. 1992 Jan;262(1 Pt 2):R14-9 PubMed
Biochim Biophys Acta. 1969 Dec 17;187(4):576-8 PubMed
Biochim Biophys Acta. 1992 Mar 26;1113(1):71-133 PubMed
Comp Biochem Physiol B. 1988;89(1):111-8 PubMed
Physiol Rev. 1992 Oct;72(4):881-940 PubMed
J Mol Cell Cardiol. 1996 Aug;28(8):1737-46 PubMed
J Mol Cell Cardiol. 1977 Aug;9(8):617-31 PubMed
J Mol Cell Cardiol. 1978 May;10(5):439-48 PubMed
Can J Biochem. 1977 Apr;55(4):308-14 PubMed
Biochim Biophys Acta. 1983 Jan 7;750(1):1-6 PubMed
J Nutr. 1990 Apr;120(4):338-45 PubMed
Biochim Biophys Acta. 1984 Apr 18;793(2):221-31 PubMed
Mol Cell Biochem. 2003 Oct;252(1-2):295-303 PubMed
Lipids. 1985 Oct;20(10):693-8 PubMed
J Lipid Res. 1968 Jul;9(4):469-72 PubMed
Lipids. 1997 May;32(5):527-34 PubMed
Pediatr Res. 1992 Jan;31(1):47-51 PubMed
J Intern Med Suppl. 1989;731:117-28 PubMed
Physiol Rev. 1992 Apr;72(2):507-62 PubMed
Lipids. 1992 Aug;27(8):605-12 PubMed
J Biol Chem. 1957 May;226(1):497-509 PubMed
Membr Biochem. 1990 Jan-Mar;9(1):29-45 PubMed
Lipids. 2002 Apr;37(4):407-15 PubMed
Mol Cell Biochem. 2002 Mar;232(1-2):49-56 PubMed
Ann Nutr Metab. 1999;43(6):365-73 PubMed
Physiol Res. 2001;50(3):237-45 PubMed
Lipids. 1974 Aug;9(8):541-7 PubMed
Biochim Biophys Acta. 1969 Apr 29;176(3):650-3 PubMed
Arch Biochem Biophys. 1991 May 1;286(2):498-503 PubMed
Am J Physiol. 1978 Nov;235(5):C147-58 PubMed
Biochem J. 1984 Dec 1;224(2):651-9 PubMed
Biochim Biophys Acta. 1983 Jul 12;752(2):284-90 PubMed
Biochem Cell Biol. 1990 Jan;68(1):9-16 PubMed
Am J Clin Nutr. 1981 Feb;34(2):252-7 PubMed