Glucosylceramide transfer from lysosomes--the missing link in molecular pathology of glucosylceramidase deficiency: a hypothesis based on existing data
Language English Country United States Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
- MeSH
- Models, Biological MeSH
- Biological Transport MeSH
- Glucosylceramidase deficiency therapeutic use MeSH
- Glucosylceramides metabolism MeSH
- Humans MeSH
- Lysosomes chemistry metabolism MeSH
- Macrophages metabolism MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Glucosylceramidase MeSH
- Glucosylceramides MeSH
Gaucher disease (GD), deficiency of acid glucosylceramidase (GlcCer-ase) is characterized by deficient degradation of beta-glucosylceramide (GlcCer). It is well known that, in GD, the lysosomal accumulation of uncleaved GlcCer is limited to macrophages, which are gradually converted to storage cells with well known cytology--Gaucher cells (GCs). On the basis of previous studies of the disorder and of a comparison with other lysosomal enzymopathies affecting degradation of the GlcCer-based glycosphingolipid series, it is hypothesized that in other cell types (i.e. non-macrophage cells) the uncleaved GlcCer, in GlcCer-ase deficiency, is transferred to other cell compartments, where it may be processed and even accumulated to various degrees. The consequence of the abnormal extralysosomal load may differ according to the cell type and compartment targeted and may be influenced by genetically determined factors, by a number of acquired conditions, including the current metabolic situation. The sequelae of the uncleaved GlcCer extralysosomal transfer may range from probably innocent or positive stimulatory, to the much more serious, in which it interferes with a variety of cell functions, and in extreme cases, can lead to cell death. This alternative processing of uncleaved GlcCer may help to explain tissue alterations seen in GD that have, so far, resisted explanation based simply on the presence of GCs. Paralysosomal alternative processing may thus go a long way towards filling a long-standing gap in the understanding of the molecular pathology of the disorder. The impact of this alternative process will most likely be inversely proportional to the level of residual GlcCer-ase activity. Lysosomal sequestration of GlcCer in these cells is either absent or in those exceptional cases where it does occur, it is exceptional and rudimentary. It is suggested that paralysosomal alternative processing of uncleaved GlcCer is the main target for enzyme replacement therapy. The mechanism responsible for GlcCer transfer remains to be elucidated. It may also help in explaining the so far unclear origin of glucosylsphingosine (GlcSph) and define the mutual relation between these two processes.
See more in PubMed
Mol Genet Metab. 2003 Jun;79(2):104-9 PubMed
Baillieres Clin Haematol. 1997 Dec;10(4):657-89 PubMed
Acta Pathol Jpn. 1990 Jun;40(6):425-30 PubMed
Cardiology. 1985;72(3):144-6 PubMed
J Lipid Res. 2002 Aug;43(8):1293-302 PubMed
J Bone Miner Metab. 2002;20(1):34-8 PubMed
J Clin Invest. 1995 Jun;95(6):2903-9 PubMed
Clin Genet. 2001 May;59(5):360-3 PubMed
J Perinatol. 2005 May;25(5):356-8 PubMed
J Neurosci Res. 1996 Feb 1;43(3):365-71 PubMed
Obstet Gynecol. 1993 May;81(5 ( Pt 2)):842-4 PubMed
Biochim Biophys Acta. 1993 Mar 24;1181(1):55-62 PubMed
Sao Paulo Med J. 2002 May 2;120(3):90-2 PubMed
J Pediatr. 2003 Feb;142(2):209-10 PubMed
Am J Ophthalmol. 2005 Feb;139(2):359-62 PubMed
Clin Genet. 2003 Oct;64(4):269-81 PubMed
Mol Med. 2002 May;8(5):247-50 PubMed
Acta Neurol Scand. 1992 Dec;86(6):609-15 PubMed
Acta Neuropathol Suppl. 1981;7:208-10 PubMed
Am J Med. 1978 Aug;65(2):352-60 PubMed
Biochim Biophys Acta. 1979 Feb 1;582(3):423-33 PubMed
J Pediatr. 2001 Jan;138(1):137-9 PubMed
Biochim Biophys Acta. 2004 Oct 11;1685(1-3):8-13 PubMed
Virchows Arch A Pathol Pathol Anat. 1973;360(1):27-32 PubMed
Medicine (Baltimore). 1985 Sep;64(5):310-22 PubMed
J Clin Invest. 1993 May;91(5):1909-17 PubMed
J Clin Invest. 1994 Mar;93(3):1288-92 PubMed
Neurochem Res. 1999 Feb;24(2):199-205 PubMed
Mol Genet Metab. 2004 Sep-Oct;83(1-2):6-15 PubMed
Clin Neuropathol. 1990 Nov-Dec;9(6):310-3 PubMed
Am J Med Genet A. 2003 Jul 30;120A(3):338-44 PubMed
Arch Pathol Lab Med. 1985 Jan;109(1):82-4 PubMed
Neurobiol Dis. 2003 Dec;14(3):595-601 PubMed
Biochim Biophys Acta. 1982 May 7;687(2):195-203 PubMed
Neuropediatrics. 2005 Jun;36(3):171-80 PubMed
Virchows Arch B Cell Pathol. 1977 Dec 30;26(2):133-8 PubMed
Biochemistry. 1969 Feb;8(2):506-12 PubMed
J Clin Invest. 1994 Apr;93(4):1756-64 PubMed
Blood Cells Mol Dis. 2005 Sep-Oct;35(2):259-67 PubMed
Arch Pathol Lab Med. 1977 May;101(5):255-9 PubMed
J Biol Chem. 1985 Feb 25;260(4):2295-300 PubMed
Neurochem Res. 1989 Sep;14(9):899-903 PubMed
Neurobiol Dis. 2005 Feb;18(1):83-8 PubMed
Lipids. 1988 May;23(5):508-10 PubMed
Ophthalmic Surg Lasers. 2000 Jul-Aug;31(4):331-3 PubMed
Mol Chem Neuropathol. 1995 Feb-Apr;24(2-3):179-92 PubMed
J Biol Chem. 1991 Dec 5;266(34):22968-74 PubMed
J Fr Ophtalmol. 1992;15(3):185-90 PubMed
J Pharmacol Exp Ther. 2004 Feb;308(2):705-11 PubMed
Philos Trans R Soc Lond B Biol Sci. 2003 May 29;358(1433):869-73 PubMed
J Inherit Metab Dis. 2001;24 Suppl 2:106-21; discussion 87-8 PubMed
J Biol Chem. 1980 May 25;255(10):4463-7 PubMed
Eur J Pediatr. 1989 Oct;149(1):31-9 PubMed
Pediatrics. 1995 Oct;96(4 Pt 1):629-37 PubMed
J Clin Invest. 2002 May;109(9):1215-21 PubMed
Ann Neurol. 1988 Mar;23(3):300-3 PubMed
Am J Pediatr Hematol Oncol. 1990 Spring;12(1):74-6 PubMed
Pediatr Res. 1983 May;17(5):344-8 PubMed
Physiol Rev. 2001 Oct;81(4):1689-723 PubMed
J Biol Chem. 1999 Jul 30;274(31):21673-8 PubMed
Am J Med. 2002 Aug 1;113(2):112-9 PubMed
J Biol Chem. 1991 Nov 5;266(31):20907-12 PubMed
Hum Mol Genet. 2001 Apr 15;10(9):927-40 PubMed
Arch Pathol. 1967 Jun;83(6):513-26 PubMed
J Biochem. 1980 Dec;88(6):1765-72 PubMed
Biochim Biophys Acta. 1982 Sep 14;712(3):453-63 PubMed
Pathol Res Pract. 1989 Sep;185(3):293-328 PubMed
Acta Neuropathol. 1988;75(4):385-90 PubMed
J Biol Chem. 1975 May 25;250(10):3966-71 PubMed
Glycoconj J. 2004;21(6):315-27 PubMed
Blood Cells Mol Dis. 2005 May-Jun;34(3):197-200 PubMed
Am J Cardiol. 1983 Sep 1;52(5):654 PubMed
Blood. 2000 Sep 1;96(5):1969-78 PubMed
Hum Mol Genet. 2005 Aug 15;14(16):2387-98 PubMed
Arch Dis Child. 1991 May;66(5):667 PubMed
Clin Chem Lab Med. 2002 Jan;40(1):52-5 PubMed
Eur J Haematol. 2003 May;70(5):273-81 PubMed
Int J Biochem Cell Biol. 2005 Nov;37(11):2310-20 PubMed
Cell Mol Life Sci. 2002 Apr;59(4):694-707 PubMed
Mol Genet Metab. 2004 Jul;82(3):192-207 PubMed
Am J Pathol. 2003 Nov;163(5):2093-101 PubMed
J Biol Chem. 1998 Oct 9;273(41):26522-7 PubMed
Am J Med Genet. 2002 May 15;109(4):328-31 PubMed
Cancer. 1984 Jul 15;54(2):312-4 PubMed
J Pathol Bacteriol. 1956 Jul;72(1):121-31 PubMed
Biochemistry. 1984 Dec 18;23(26):6498-505 PubMed
Mol Genet Metab. 2002 Sep-Oct;77(1-2):91-8 PubMed
Semin Cell Dev Biol. 2004 Aug;15(4):417-31 PubMed
Nature. 1992 Jun 4;357(6377):407-10 PubMed
Mol Cell. 2004 Sep 10;15(5):753-66 PubMed
Biochem J. 2003 Nov 1;375(Pt 3):561-5 PubMed
FASEB J. 2002 Nov;16(13):1814-6 PubMed
Br J Haematol. 2005 Apr;129(2):178-88 PubMed
Lab Invest. 2003 Mar;83(3):397-408 PubMed
Acta Paediatr Suppl. 2005 Mar;94(447):69-75; discussion 57 PubMed
Br J Radiol. 2002;75 Suppl 1:A2-12 PubMed
Pediatr Res. 2000 Aug;48(2):233-7 PubMed
J Biochem. 1994 Sep;116(3):704-10 PubMed
Lab Invest. 1988 May;58(5):590-8 PubMed
Pediatr Res. 1992 Oct;32(4):494-8 PubMed
J Med Genet. 2000 Nov;37(11):E40 PubMed
Mol Genet Metab. 2002 Aug;76(4):262-70 PubMed
Acta Neuropathol. 1991;82(2):152-7 PubMed
Am J Clin Pathol. 2004 Sep;122(3):359-69 PubMed
Fetal Pediatr Pathol. 2005 Jul-Oct;24(4-5):205-22 PubMed