The evolution of amphibian metamorphosis: insights based on the transformation of the aortic arches of Pelobates fuscus (Anura)
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
17367494
PubMed Central
PMC2100297
DOI
10.1111/j.1469-7580.2007.00710.x
PII: JOA710
Knihovny.cz E-zdroje
- MeSH
- aorta thoracica anatomie a histologie růst a vývoj MeSH
- biologická evoluce * MeSH
- biologická proměna fyziologie MeSH
- fyziologická adaptace MeSH
- korozní odlévání MeSH
- larva anatomie a histologie MeSH
- mikroskopie elektronová rastrovací MeSH
- obojživelníci anatomie a histologie růst a vývoj MeSH
- ryby anatomie a histologie MeSH
- žáby anatomie a histologie růst a vývoj MeSH
- životní prostředí MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
In order to gain insights into how the aortic arches changed during the transition of vertebrates to land, transformations of the aortic arches during the metamorphosis of Pelobates fuscus were investigated and compared with data from the early development of a recent ganoid fish Amia calva and a primitive caudate amphibian Salamandrella keyserlingi. Although in larval Pelobates, as in other non-pipid anurans, the gill arches serve partly as a filter-feeding device, their aortic arches maintain the original piscine-like arrangement, except for the mandibular and hyoid aortic arches which were lost. As important pre-adaptations for breathing of atmospheric oxygen occur in larval Pelobates (which have well-developed, though non-respiratory lungs and pulmonary artery), transformation of aortic arches during metamorphosis is fast. The transformation involves disappearance of the ductus Botalli, which results in a complete shunting of blood into the lungs and skin, disappearance of the ductus caroticus, which results in shunting of blood into the head through the arteria carotis interna, and disappearance of arch V, which results in shunting blood to the body through arch IV (systemic arch). It is supposed that the branching pattern of the aortic arches of permanently water-dwelling piscine ancestors, of intermediate forms which occasionally left the water and of primitive tetrapods capable of spending longer periods of time on land had been the same as in the prematamorphic anuran larvae or in some metamorphosed caudates in which the ductus caroticus and ductus Botalli were not interrupted, and arch V was still complete.
Zobrazit více v PubMed
Aichhorn H, Lametschwandtner A. Vascular regression during the amphibian metamorphosis – a scanning electron microscope study of vascular corrosion cast of the ventral velum in tadpoles of Xenopus laevis Daudin. Scanning. 1996;18:447–455. PubMed
Baker CL. The comparative anatomy of the aortic arches of the urodeles and their relation to respiration and degree of metamorphosis. J Tennessee Acad Sci. 1949;24:12–40.
Balinsky BI. An Introduction to Embryology. 5. Philadelphia: Saunders College Publishing; 1981.
Bartel H, Lametschwandtner A. Intussusceptive microvasculant growth in the lung of larval Xenopus laevis. A light microscope, transmission electron microscope and SEM study of microvascular corrosion casts. Anat Embryol. 2000;202:55–66. PubMed
Bjerring HC. Does a homology exist between the basicranial muscle and the polar cartilage? Colloques int Cent Natn Rech Scient. 1967;163:223–267.
Bjerring HC. Relationships of coelacanthiforms. In: Greenwood PH, Miles RS, Patterson C, editors. Interrelationships of Fishes. London: Academic Press; 1973. pp. pp179–205.
Bjerring HC. A contribution to structural analysis of the head of craniate animals. Zool Scr. 1977;6:127–183.
Boas JEV. Über den Conus arteriosus und die Arterienbogen der Amphibien. Morph Jahrb. 1882;7:488–568.
Brauer A. Beitrag zur Kenntniss der Entwicklungsgeschichte und der Anatomie der Gymnophionen. Zool Jahrb Abt Anat Ontog Tiere. 1897;10:389–472.
Brazeau MD, Ahlberg PE. Tetrapod-like middle ear architecture in a Devonian fish. Nature. 2006;439:318–321. PubMed
Carroll R. Between fish and amphibian. Nature. 1995;373:389–390.
Clack JA. The earliest known tetrapod braincase and the evolution of the stapes and fenestra ovalis. Nature. 1994;369:392–394.
Clack JA. The neurocranium of Acanthostega gunnari and the evolution of the otic region in tetrapods. Zool J Linn Soc. 1998;122:61–97.
Clack JA. The origin of tetrapods. In: Heatwole H, Carroll RL, editors. Amphibian Biology, Palaeontology. Vol. 4. Chipping Norton: Surrey Beatty & Sons; 2000. pp. 979–1029.
Clack JA, Ahlberg PE, Finney SM, Dominguez Alonso P, Robinson J, Ketcham RA. A uniquely specialized ear in a very early tetrapod. Nature. 2003;425:65–69. PubMed
Daeschler EB, Shubin NH, Jenkins FA., Jr A Devonian tetrapod-like fish and the evolution of the tetrapod body plan. Nature. 2006;440:757–763. PubMed
De Saint-Aubain ML. Blood flow patterns of the respiratory system in larval and adult amphibian: functional morphology and phylogenetic significance. Z Zool Syst Evol. 1985;23:229–240.
Delsol M, Flatin J. Anatomie du système vasculaire des têtards de batraciens. Paris: Librairie de la Faculté des Sciences; 1972.
Eales N. Persistent fifth arterial arch in the frog. Nature. 1949;165:648. PubMed
Exbrayat J-M. Les GymnophionesCes Curieux Amphibiens. Paris: Societe nouvelle des editions Boubee; 2000.
Gaupp E. Anatomie des FroschesAbt2Lehre Vom Nerven- und Gefäßsystem. Braunschweig: Vieweg u. Sohn; 1899.
Goodrich ES. Studies on the Structure and Development of Vertebrates. Vol. 2. New York: Dover Publications Inc.; 1958.
Graaf AR. Investigations into the distribution of blood in the heart and aortic arches of Xenopus laevis (Daud.) J Exp Biol. 1957;34:143–172.
Grobbelaar CS. On the venous and arterial system of the ‘Platanna’ (Xenopus laevis, Daud) Z Anat Entwicklungs. 1924a;72:392–398.
Grobbelaar CS. Beiträge zu einer anatomischen Monographie von Xenopus laevis (Daud.) Z Anat Entwicklungs. 1924b;72:131–168.
Hafferl A. Das Arteriensystem. In: Bolk L, Göppert E, Kallius E, Lubosch W, editors. Handbuch der Vergleichenden Anatomie der Wirbeltiere, 6: Urogenital und Gefäßsystem. Berlin: Urban & Schwarzenberg; 1933. pp. 563–684.
Jarvik E. On the fish-like tail in the ichthyostegid stegocephalians with descriptions of a new stegocephalian and a new crossopterygian from the Upper Devonian of East Greenland. Meddr Grønland. 1952;114:1–90.
Jarvik E. Basic Structure and Evolution of Vertebrates. London: Academic Press; 1980.
Jarvik E. The Devonian tetrapod Ichthyostega. Fossils Strata. 1995;40:1–213.
Kato S, Kurihara K. The blood vascular architecture of the salamander external gill: a scanning microscopic study of corrosion cast. Okajimas Folia Anat Japon. 1989;66:171–194. PubMed
Klinckowström AV. Zur Anatomie der Pipa Americana. 3. Gefässsystem und subcutane Lymphsäcke. Zool Jahrb Abt Anat Ontog Tiere. 1894;7:647–666.
Kusakabe T. Ultrastructural characteristic of glomus cells in the external carotid artery during the larval development and metamorphosis in bullfrogs, Rana catesbeiana. Anat Rec. 1992;233:461–466. PubMed
Lanot R. Evolution des arcs artériels postérieurs au cours de la métamorphose chèz la grenouille rousse (Rana temporaria) B Biol Fr Belg. 1962;96:703–722.
Magnin E. Anatomie du têtard d’Alytes obstetricans Laur. Acta Soc Linn Bordeaux. 1959;98:1–60.
McIndoe R, Smith DG. Functional anatomy of the internal gills of the tadpole Litoria ewigni (Anura: Hylidae) Zoomorphology. 1984;104:280–291.
Millard N. The vascular anatomy of Xenopus laevis (Daudin) Trans R Soc S Afr. 1941;28:387–439.
Millard N. Abnormalities and variations in the vascular system of Xenopus laevis (Daudin) Trans R Soc S Afr. 1942;29:9–28.
Millard N. The development of the arterial system of Xenopus laevis, including experiments on the destruction of the larval aortic arches. Trans R Soc S Afr. 1945;30:217–234.
Minnich B, Bartel H, Lametschwandtner A. How a highly complex threedimensional network of blood vessels regresses: the gill blood vascular system of tadpoles of Xenopus during metamorphosis. A SEM study on microvascular corrosion casts. Microvasc Res. 2002;64:425–437. PubMed
Moy-Thomas JA, Miles RS. Palaeozoic Fishes. London: Chapman & Hall; 1971.
Nieuwkoop PD, Faber J. Normal Table of Xenopus laevis (Daudin) Amsterdam: North-Holland Publishing Co.; 1967.
Nikitin B. Some particularities in the development of the vascular system of Xenopus laevis. B Soc Nat Moscou. 1925;34:286–308.
Paterson NF. The anterior blood-vessels of Xenopus laevis. S Afr J Sci. 1942;38:279–291.
Ramaswami LS. An account of the heart and associated vessels in some genera of Apoda (Amphibia) Proc Zool Soc. 1944;114:117–139.
Robertson JI. The development of the heart and vascular system of Lepidosiren paradoxa. Quart J Micr Sci. 1914;59:53–132.
Roček Z. Larval development and evolutionary origin of the anuran skull. In: Heatwole H, Davies M, editors. Amphibian Biology, Osteology. Vol. 5. Chipping Norton: Surrey Beatty & Sons; 2003. pp. 1877–1995.
Romer AS. The braincase of the Carboniferous crossopterygian Megalichthys nitidus. B Mus Comp Zool. 1937;82:1–73.
Romer AS, Parsons TS. The Vertebrate Body. Philadelphia: W.B. Saunders Company; 1977.
Schmalhausen II. The first arterial arches and the development of the carotid artery system in Amphibia. Zool Zh. 1953a;32:937–954. [In Russian]
Schmalhausen II. Development of the arterial system in the head of tailed amphibians. Zool Zh. 1953b;32:642–661. [In Russian]
Schmalhausen II. Development of gills, their blood vessels, and musculature in Amphibia. Zool Zh. 1954;33:848–868. [In Russian]
Schmalhausen II. Development of the visceral musculature in tailed amphibians. Zool Zh. 1955;34:162–174. [In Russian]
Schmalhausen II. The Origin of Terrestrial Vertebrates. New York: Academic Press; 1968.
Schulze FE. Über die inneren Kiemen der Batrachierlarven 1. Epithel der Lippen, der Mund-, Rachen- und Kiemenhöhle erwachsener Larven von Pelobates fuscus. Abh König Akad Wiss. 1889;1889:1–59.
Schulze FE. Über die inneren Kiemen der Batrachierlarven 2. Skelet, Musculatur, Blutgefäβe, Filterapparat, respiratorische Anhänge und Athmungsbewegungen erwachsener Larven von Pelobates fuscus. Abh König Akad Wiss. 1892;1892:1–66.
Stadtmüller F. Kranium und Visceralskelett der Stegocephalen und Amphibien. In: Bolk L, Göppert E, Kallius E, Lubosch W, editors. Handbuch der Vergleichenden Anatomie der Wirbeltiere, 4: Skelettsystem. Berlin: Urban & Schwarzenberg; 1936. pp. 501–698.
Stephenson EM. The anatomy of the head of the New Zealand Frog, Leiopelma. Trans Zool Soc Lond. 1951;27:255–305.
Strawinski S. Vascularization of respiratory surfaces in ontogeny of the edible frog, Rana esculanta. Zool Pol. 1956;7:327–365.
Szarski H. The blood vessels of the thymus gland in some of the Salientia. B Acad Pol Sci Lett B. 1937;1937:139–149.
Szarski H. On the blood-vascular system of the Salientia. B Acad Pol Sci Lett B. 1948;1948(1947):145–211.
Szarski H. Remarks on the blood-vascular system of the frog Leiopelma hochstetteri Fitzinger. Trans Roy Soc NZ. 1951;79:140–147.
Taylor C, Kollros JJ. Stages of the normal development of Rana pipiens larvae. Anat Rec. 1946;94:7–24. PubMed
Viertel B, Richter S. Anatomy. Viscera and endocrines. In: McDiarmid W, Altig R, editors. TadpolesThe Biology of the Anuran Larvae. Chicago: The University of Chicago Press; 1999. pp. 92–148.
Vorobyeva E. The shoulder girdle of Panderichthys rhombolepis (Gross) (Crossopterygii), Upper Devonian, Latvia. Geobios. 1995;19:285–288.
Wake M. The osteology of caecilians. In: Heatwole H, Davies M, editors. Amphibian Biology, Osteology. Vol. 5. Chipping Norton: Surrey Beatty & Sons; 2003. pp. 1809–1875.
Wassersug RJ, Yamashita M. The mechanics of air-breathing in anuran larvae: implications to the development of amphibians in microgravity. Adv Space Res. 2000;25:2007–2013. PubMed
Weisz PB. The development and morphology of the larva of the South African clawed toad, Xenopus laevis. J Morph. 1945;77:163–217. PubMed
Witschi E. Integration of larval organs. In: Witschi E, editor. Development of Vertebrates. Philadelphia: Saunders; 1956. pp. 115–137.
Sonic hedgehog is required for the assembly and remodeling of branchial arch blood vessels