Kinetic constant variability in bacterial oxidation of elemental sulfur

. 2007 Jun ; 73 (11) : 3752-4. [epub] 20070420

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid17449698

Wide ranges of growth yields on sulfur (from 2.4 x 10(10) to 8.1 x 10(11) cells g(-1)) and maximum sulfur oxidation rates (from 0.068 to 1.30 mmol liter(-1) h(-1)) of an Acidithiobacillus ferrooxidans strain (CCM 4253) were observed in 73 batch cultures. No significant correlation between the constants was observed. Changes of the Michaelis constant for sulfur (from 0.46 to 15.5 mM) in resting cells were also noted.

Zobrazit více v PubMed

Baker, B. J., and J. F. Banfield. 2003. Microbial communities in acid mine drainage. FEMS Microbiol. Ecol. 44:139-152. PubMed

Brasseur, G., G. Levican, V. Bonnefoy, D. Holmes, E. Jedlicki, and D. Lemesle-Meunier. 2004. Apparent redundancy of electron transfer pathways via bc(1) complexes and terminal oxidases in the extremophilic chemolithoautotrophic Acidithiobacillus ferrooxidans. Biochim. Biophys. Acta 1656:114-126. PubMed

Ceskova, P., M. Mandl, S. Helanova, and J. Kasparovska. 2002. Kinetic studies on elemental sulfur oxidation by Acidithiobacillus ferrooxidans: sulfur limitation and activity of free and adsorbed bacteria. Biotechnol. Bioeng. 78:24-30. PubMed

Chen, M. C., Y. K. Zhang, B. H. Zhong, L. Y. Qiu, and B. Liang. 2002. Growth kinetics of thiobacilli strain HSS and its application in bioleaching phosphate ore. Ind. Eng. Chem. Res. 41:1329-1334.

Friedrich, C. G., D. Rother, F. Bardischewsky, A. Quentmeier, and J. Fischer. 2001. Oxidation of reduced inorganic sulfur compounds by bacteria: emergence of a common mechanism? Appl. Environ. Microbiol. 67:2873-2882. PubMed PMC

Gourdon, R., and N. Funtowicz. 1998. Kinetic model of elemental sulfur oxidation by Thiobacillus thiooxidans in batch slurry reactors. Bioprocess Eng. 18:241-249.

Hallberg, K. B., M. Dopson, and E. B. Lindstrom. 1996. Arsenic toxicity is not due to a direct effect on the oxidation of reduced inorganic sulfur compounds by Thiobacillus caldus. FEMS Microbiol. Lett. 145:409-414.

Hallberg, K. B., and D. B. Johnson. 2001. Biodiversity of acidophilic prokaryotes. Adv. Appl. Microbiol. 49:37-84. PubMed

Janiczek, O., M. Mandl, and P. Ceskova. 1998. Metabolic activity of Thiobacillus ferrooxidans on reduced sulfur compounds detected by capillary isotachophoresis. J. Biotechnol. 61:225-229.

Johnson, D. B., and K. B. Hallberg. 2003. The microbiology of acidic mine waters. Res. Microbiol. 154:466-473. PubMed

Johnson, D. B., and K. B. Hallberg. 2005. Acid mine drainage remediation options: a review. Sci. Total Environ. 338:3-14. PubMed

Konishi, Y., S. Asai, and N. Yoshida. 1995. Growth kinetics of Thiobacillus thiooxidans on the surface of elemental sulfur. Appl. Environ. Microbiol. 61:3617-3622. PubMed PMC

Konishi, Y., Y. Takasaka, and A. Satoru. 1994. Kinetics of growth and elemental sulfur oxidation in batch culture of Thiobacillus ferrooxidans. Biotechnol. Bioeng. 44:667-673. PubMed

Lorbach, S. C., J. M. Shively, and V. Buonfiglio. 1992. Kinetics of sulfur oxidation by Thiobacillus ferrooxidans. Geomicrobiol. J. 10:219-226.

Rawlings, D. E. 2004. Microbially assisted dissolution of minerals and its use in the mining industry. Pure Appl. Chem. 76:847-859.

Suzuki, I., D. Lee, B. Mackay, L. Harahuc, and J. K. Oh. 1999. Effect of various ions, pH, and osmotic pressure on oxidation of elemental sulfur by Thiobacillus thiooxidans. Appl. Environ. Microbiol. 65:5163-5168. PubMed PMC

Zobrazit více v PubMed

GENBANK
EF465493

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...