Can Sulfate Be the First Dominant Aqueous Sulfur Species Formed in the Oxidation of Pyrite by Acidithiobacillus ferrooxidans?
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic-ecollection
Document type Journal Article
PubMed
30619202
PubMed Central
PMC6305575
DOI
10.3389/fmicb.2018.03134
Knihovny.cz E-resources
- Keywords
- Acidithiobacillus ferrooxidans, cellular ATP, iron-oxidizing bacteria, pyrite electrode, pyrite oxidation, tetrathionate hydrolase,
- Publication type
- Journal Article MeSH
According to the literature, pyrite (FeS2) oxidation has been previously determined to involve thiosulfate as the first aqueous intermediate sulfur product, which is further oxidized to sulfate. In the present study, pyrite oxidation by Acidithiobacillus ferrooxidans was studied using electrochemical and metabolic approaches in an effort to extend existing knowledge on the oxidation mechanism. Due to the small surface area, the reaction rate of a compact pyrite electrode in the form of polycrystalline pyrite aggregate in A. ferrooxidans suspension was very slow at a spontaneously formed high redox potential. The slow rate made it possible to investigate the oxidation process in detail over a term of 100 days. Using electrochemical parameters from polarization curves and levels of released iron, the number of exchanged electrons per pyrite molecule was estimated. The values close to 14 and 2 electrons were determined for the oxidation with and without bacteria, respectively. These results indicated that sulfate was the dominant first aqueous sulfur species formed in the presence of bacteria and elemental sulfur was predominantly formed without bacteria. The stoichiometric calculations are consistent with high iron-oxidizing activities of bacteria that continually keep the released iron in the ferric form, resulting in a high redox potential. The sulfur entity of pyrite was oxidized to sulfate by Fe3+ without intermediate thiosulfate under these conditions. Cell attachment on the corroded pyrite electrode surface was documented although pyrite surface corrosion by Fe3+ was evident without bacterial participation. Attached cells may be important in initiating the oxidation of the pyrite surface to release iron from the mineral. During the active phase of oxidation of a pyrite concentrate sample, the ATP levels in attached and planktonic bacteria were consistent with previously established ATP content of iron-oxidizing cells. No significant upregulation of three essential genes involved in energy metabolism of sulfur compounds was observed in the planktonic cells, which represented the dominant biomass in the pyrite culture. The study demonstrated the formation of sulfate as the first dissolved sulfur species with iron-oxidizing bacteria under high redox potential conditions. Minor aqueous sulfur intermediates may be formed but as a result of side reactions.
Department of Biochemistry Faculty of Science Masaryk University Brno Czechia
Department of Geological Sciences Faculty of Science Masaryk University Brno Czechia
Department of Microbiology The Ohio State University Columbus OH United States
See more in PubMed
Balci N., Shanks W. C., Mayer B., Mandernack K. W. (2007). Oxygen and sulfur isotope systematics of sulfate produced by bacterial and abiotic oxidation of pyrite. Geochim. Cosmochim. Acta 71 3796–3811. 10.1016/j.gca.2007.04.017 DOI
Banerjee I., Burrell B., Reed C., West A. C., Banta S. (2017). Metals and minerals as a biotechnology feedstock: engineering biomining microbiology for bioenergy applications. Curr. Opin. Biotechnol. 45 144–155. 10.1016/j.copbio.2017.03.009 PubMed DOI
Bartakova I., Kummerova M., Mandl M., Pospisil M. (2001). Phytotoxicity of iron in relation to its solubility conditions and the effect of ionic strength. Plant Soil 235 45–51. 10.1023/A:1011854031273 DOI
Bethke C. M., Yeakel S. (2018). The Geochemist’s Workbench®, Release 11. GWB Essentials Guide. Champaign, IL: Aqueous Solutions LLC.
Bigham J. M., Nordstrom D. K. (2000). Iron and aluminum hydroxysulfates from acid sulfate waters. Rev. Mineral. Geochem. 40 351–403. 10.2138/rmg.2000.40.7 DOI
Blowes D. W., Ptacek C. J., Jambor J. L., Weisener C. G., Paktunc D., Gould W. D., et al. (2014). “The geochemistry of acid mine drainage,” in Treatise on Geochemistry, 2nd Edn Vol. 11 eds Holland H. D., Turekian K. K. (Amsterdam: Elsevier; ), 131–190. 10.1016/B978-0-08-095975-7.00905-0 DOI
Bouchal P., Zdráhal Z., Helánová S., Janiczek O., Hallberg K. B., Mandl M. (2006). Proteomic and bioinformatic analysis of iron- and sulfur-oxidizing Acidithiobacillus ferrooxidans using immobilized pH gradients and mass spectrometry. Proteomics 6 4278–4285. 10.1002/pmic.200500719 PubMed DOI
Descostes M., Vitorge P., Beaucaire C. (2004). Pyrite dissolution in acidic media. Geochim. Cosmochim. Acta 68 4559–4569. 10.1016/j.gca.2004.04.012 DOI
Dold B. (2014). Evolution of acid mine drainage formation in sulphidic mine tailings. Minerals 4 621–641. 10.3390/min4030621 PubMed DOI
Fowler T. A., Holmes P. R., Crundwell F. K. (1999). Mechanism of pyrite dissolution in the presence of Thiobacillus ferrooxidans. Appl. Environ. Microbiol. 65 2987–2993. PubMed PMC
Gehrke T., Telegdi J., Thierry D., Sand W. (1998). Importance of extracellular polymeric substances from Thiobacillus ferrooxidans for bioleaching. Appl. Environ. Microbiol. 64 2743–2747. PubMed PMC
González D. M., Lara R. H., Alvarado K. N., Valdez-Pérez D., Navarro-Contreras H. R., Cruz R., et al. (2012). Evolution of biofilms during the colonization process of pyrite by Acidithiobacillus thiooxidans. Appl. Microbiol. Biotechnol. 93 763–775. 10.1007/s00253-011-3465-2 PubMed DOI
Hedrich S., Guézennec A. G., Charron M., Schippers A., Joulian C. (2016). Quantitative monitoring of microbial species during bioleaching of a copper concentrate. Front. Microbiol. 7:2044. 10.3389/fmicb.2016.02044 PubMed DOI PMC
Hipsey M. R., Salmon S. U., Mosley L. M. (2014). A three-dimensional hydro-geochemical model to assess lake acidification risk. Environ. Model. Softw. 61 433–457. 10.1016/j.envsoft.2014.02.007 DOI
Holmes P. R., Crundwell F. K. (2000). The kinetics of the oxidation of pyrite by ferric ions and dissolved oxygen: an electrochemical study. Geochim. Cosmochim. Acta 64 263–274. 10.1016/S0016-7037(99)00296-3 DOI
Holmes P. R., Fowler T. A., Crundwell F. K. (1999). The mechanism of bacterial action in the leaching of pyrite by Thiobacillus ferrooxidans. J. Electrochem. Soc. 146 2906–2912. 10.1149/1.1392027 DOI
Janiczek O., Mandl M., Ceskova P. (1998). Metabolic activity of Thiobacillus ferrooxidans on reduced sulfur compounds detected by capillary isotachophoresis. J. Biotechnol. 61 225–229. 10.1016/S0168-1656(98)00043-1 DOI
Johnson D. B. (2012). Geomicrobiology of extremely acidic subsurface environments. FEMS Microbiol. Ecol. 81 2–12. 10.1111/j.1574-6941.2011.01293.x PubMed DOI
Kaksonen A. H., Morris C., Rea S., Li J., Wylie J., Usher K. M., et al. (2014). Biohydrometallurgical iron oxidation and precipitation: part I—effect of pH on process performance. Hydrometallurgy 147–148, 255–263. 10.1016/j.hydromet.2014.04.016 DOI
Kucera J., Bouchal P., Lochman J., Potesil D., Janiczek O., Zdrahal Z., et al. (2013). Ferrous iron oxidation by sulfur-oxidizing Acidithiobacillus ferrooxidans and analysis of the process at the levels of transcription and protein synthesis. Antonie Van Leeuwenhoek 103 905–919. 10.1007/s10482-012-9872-2 PubMed DOI
Kucera J., Pakostova E., Lochman J., Janiczek O., Mandl M. (2016). Are there multiple mechanisms of anaerobic sulfur oxidation with ferric iron in Acidithiobacillus ferrooxidans? Res. Microbiol. 167 357–366. 10.1016/j.resmic.2016.02.004 PubMed DOI
Lara R. H., García-Meza J. V., Cruz R., Valdez-Pérez D., González I. (2012). Influence of the sulfur species reactivity on biofilm conformation during pyrite colonization by Acidithiobacillus thiooxidans. Appl. Microbiol. Biotechnol. 95 799–809. 10.1007/s00253-011-3715-3 PubMed DOI
Li L., Polanco C., Ghahreman A. (2016). Fe(III)/Fe(II) reduction-oxidation mechanism and kinetics studies on pyrite surfaces. J. Electroanal. Chem. 774 66–75. 10.1016/j.jelechem.2016.04.035 DOI
Liu C., Jia Y., Sun H., Tan Q., Niu X., Leng X., et al. (2017). Limited role of sessile acidophiles in pyrite oxidation below redox potential of 650 mV. Sci. Rep. 7:5032. 10.1038/s41598-017-04420-2 PubMed DOI PMC
Liu Y., Dang Z., Lu G., Wu P., Feng C., Yi X. (2011a). Utilization of electrochemical impedance spectroscopy for monitoring pyrite oxidation in the presence and absence of Acidithiobacillus ferrooxidans. Miner. Eng. 24 833–838. 10.1016/j.mineng.2011.03.002 DOI
Liu Y., Dang Z., Wu P. X., Lu J., Shu X., Zheng L. (2011b). Influence of ferric iron on the electrochemical behavior of pyrite. Ionics 17 169–176. 10.1007/s11581-010-0492-4 DOI
Luther G. W. (1987). Pyrite oxidation and reduction: molecular-orbital theory considerations. Geochim. Cosmochim. Acta 51 3193–3199. 10.1016/0016-7037(87)90127-X DOI
Mandl M., Novakova O. (1993). An ultraviolet spectrophotometric method for the determination of oxidation of iron sulfide minerals by bacteria. Biotechnol. Tech. 7 573–574. 10.1007/BF00156331 DOI
Mandl M., Vyskovsky M. (1994). Kinetics of arsenic(III) oxidation by iron(III) catalysed by pyrite in the presence of Thiobacillus ferrooxidans. Biotechnol. Lett. 16 1199–1204. 10.1007/BF01020851 DOI
Mandl M., Zeman J., Bartakova I., Vesela H. (1999). “Pyrite biooxidation: Electrochemical and kinetic data,” in Biohydrometallurgy and the Environment Toward the Mining of the 21st Century, Part A, eds Amils R., Ballester A. (Elsevier: Amsterdam; ), 423–429.
McKibben M. A., Barnes H. L. (1986). Oxidation of pyrite in low temperature acidic solutions: rate laws and surface textures. Geochim. Cosmochim. Acta 50 1509–1520. 10.1016/0016-7037(86)90325-X DOI
Moses C. O., Nordstrom D. K., Herman J. S., Mills A. L. (1987). Aqueous pyrite oxidation by dissolved oxygen and by ferric iron. Geochim. Cosmochim. Acta 51 1561–1571. 10.1016/0016-7037(87)90337-1 PubMed DOI
Mustin C., Berthelin J., Marion P., de Donato P. (1992). Corrosion and electrochemical oxidation of a pyrite by Thiobacillus ferrooxidans. Appl. Environ. Microbiol. 58 1175–1182. PubMed PMC
Mustin C., de Donato P., Berthelin J., Marion P. (1993). Surface sulfur as promoting agent of pyrite leaching by Thiobacillus ferrooxidans. FEMS Microbiol. Rev. 11 71–78. 10.1016/0168-6445(93)90026-6 DOI
Nicol M., Miki H., Basson P. (2013). The effects of sulphate ions and temperature on the leaching of pyrite. 2. dissolution rates. Hydrometallurgy 133 182–187. 10.1016/j.hydromet.2013.01.009 DOI
Nieto P. A., Covarrubias P. C., Jedlicki E., Holmes D. S., Quatrini R. (2009). Selection and evaluation of reference genes for improved interrogation of microbial transcriptomes: case study with the extremophile Acidithiobacillus ferrooxidans. BMC Mol. Biol. 10:63. 10.1186/1471-2199-10-63 PubMed DOI PMC
Nuñez H., Moya-Beltrán A., Covarrubias P. C., Issotta F., Cárdenas J. P., González M., et al. (2017). Molecular systematics of the genus Acidithiobacillus: insights into the phylogenetic structure and diversification of the taxon. Front. Microbiol. 8:30 10.3389/fmicb.2017.00030 PubMed DOI PMC
Pakostova E., Mandl M., Omesova Pokorna B. O., Diviskova E., Lojek A. (2013a). Cellular ATP changes in Acidithiobacillus ferrooxidans cultures oxidizing ferrous iron and elemental sulfur. Geomicrobiol. J. 30 1–7. 10.1080/01490451.2011.636790 DOI
Pakostova E., Mandl M., Tuovinen O. H. (2013b). Cellular ATP and biomass of attached and planktonic sulfur-oxidizing Acidithiobacillus ferrooxidans. Process. Biochem. 48 1785–1788. 10.1016/j.procbio.2013.07.026 DOI
Pfaffl M. W. (2001). A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 29:e45 10.1093/nar/29.9.e45 PubMed DOI PMC
Pokorna B., Mandl M., Borilova S., Ceskova P., Markova R., Janiczek O. (2007). Kinetic constant variability in bacterial oxidation of elemental sulfur. Appl. Environ. Microbiol. 73 3752–3754. 10.1128/AEM.02549-06 PubMed DOI PMC
Quatrini R., Johnson B. D. (2018). Microbiomes in extremely acidic environments: functionalities and interactions that allow survival and growth of prokaryotes at low pH. Curr. Opin. Microbiol. 43 139–147. 10.1016/j.mib.2018.01.011 PubMed DOI
Rimstidt J. D., Vaughan D. J. (2003). Pyrite oxidation: a state-of-the-art assessment of the reaction mechanism. Geochim. Cosmochim. Acta 67 873–880. 10.1016/S0016-7037(02)01165-1 DOI
Rohwerder T., Gehrke T., Kinzler K., Sand W. (2003). Bioleaching review part A: progress in bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation. Appl. Microbiol. Biotechnol. 63 239–248. 10.1007/s00253-003-1448-7 PubMed DOI
Schippers A., Hedrich S., Vasters J., Drobe M., Sand W., Willscher S. (2014). “Biomining: metal recovery from ores with microorganisms,” in Geobiotechnology I. Advances in Biochemical Engineering/Biotechnology Vol. 141 eds Schippers A., Glombitza F., Sand W. (Berlin: Springer; ), 1–47. PubMed
Schippers A., Jozsa P. G., Sand W. (1996). Sulfur chemistry in bacterial leaching of pyrite. Appl. Environ. Microbiol. 62 3424–3431. PubMed PMC
Schippers A., Rohwerder T., Sand W. (1999). Intermediary sulfur compounds in pyrite oxidation: implications for bioleaching and biodepyritization of coal. Appl. Microbiol. Biotechnol. 52 104–110. 10.1007/s002530051495 DOI
Schippers A., Sand W. (1999). Bacterial leaching of metal sulfides proceeds by two indirect mechanisms via thiosulfate or via polysulfides and sulfur. Appl. Environ. Microbiol. 65 319–321. PubMed PMC
Sethurajan M., van Hullebusch E. D., Nancharaiah Y. V. (2018). Biotechnology in the management and resource recovery from metal bearing solid wastes: recent advances. J. Environ. Manage. 211 138–153. 10.1016/j.jenvman.2018.01.035 PubMed DOI
Tamura H., Goto K., Yotsuyanagi T., Nagayama M. (1974). Spectrophotometric determination of iron(II) with 1,10-phenanthroline in the presence of large amounts of iron(III). Talanta 21 314–318. 10.1016/0039-9140(74)80012-3 PubMed DOI
Toniazzo V., Lazaro I., Bernard B., Mustin C. (1999). Bioleaching of pyrite by Thiobacillus ferrooxidans: fixed grains electrode to study superficial oxidized compounds. C. R. Acad. Sci. Paris. Ser. IIA Earth Planet. Sci. 328 535–540. 10.1016/S1251-8050(99)80135-9 DOI
Tu Z., Guo C., Zhang T., Lu G., Wan J., Liao C., et al. (2017a). Investigation of intermediate sulfur species during pyrite oxidation in the presence and absence of Acidithiobacillus ferrooxidans. Hydrometallurgy 167 58–65. 10.1016/j.hydromet.2016.11.001 DOI
Tu Z., Wan J., Guo C., Fan C., Zhang T., Lu G., et al. (2017b). Electrochemical oxidation of pyrite in pH 2 electrolyte. Electrochim. Acta 239 25–35. 10.1016/j.electacta.2017.04.049 DOI
Vera M., Rohwerder T., Bellenberg S., Sand W., Denis Y., Bonnefoy V. (2009). Characterization of biofilm formation by the bioleaching acidophilic bacterium Acidithiobacillus ferrooxidans by a microarray transcriptome analysis. Adv. Mater. Res. 71-73 175–178.
Vera M., Schippers A., Sand W. (2013). Progress in bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation-part A. Appl. Microbiol. Biotechnol. 97 7529–7541. 10.1007/s00253-013-4954-2 PubMed DOI
Wei D., Osseo-Asare K. (1997). Semiconductor electrochemistry of particulate pyrite: mechanisms and products of dissolution. J. Electrochem. Soc. 144 546–553. 10.1149/1.1837446 DOI
Werner A., Meschke K., Bohlke K., Daus B., Haseneder R., Repke J. U. (2018). Resource recovery from low-grade ore deposits and mining residuals by biohydrometallurgy and membrane technology potentials and case studies. ChemBioEng. Rev. 5 6–17. 10.1002/cben.201700019 DOI
Wu X., Wong Z. L., Sten P., Engblom S., Österholm P., Dopson M. (2013). Microbial community potentially responsible for acid and metal release from an Ostrobothnian acid sulfate soil. FEMS Microbiol. Ecol. 84 555–563. 10.1111/1574-6941.12084 PubMed DOI PMC
Zeman J., Mandl M., Mrnuštíková P. (1995). Oxidation of arsenopyrite by Thiobacillus ferrooxidans detected by a mineral electrode. Biotechnol. Tech. 9 111–116. 10.1007/BF00224408 PubMed DOI
Zheng K., Li H., Wang L., Wen X., Liu Q. (2017). Pyrite oxidation under simulated acid rain weathering conditions. Environ. Sci. Pollut. Res. 24 21710–21720. 10.1007/s11356-017-9804-9 PubMed DOI