Ferrous iron oxidation by sulfur-oxidizing Acidithiobacillus ferrooxidans and analysis of the process at the levels of transcription and protein synthesis
Jazyk angličtina Země Nizozemsko Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
- MeSH
- 2D gelová elektroforéza MeSH
- Acidithiobacillus růst a vývoj metabolismus fyziologie MeSH
- bakteriální proteiny biosyntéza MeSH
- fyziologická adaptace MeSH
- genetická transkripce MeSH
- kvantitativní polymerázová řetězová reakce MeSH
- metabolické sítě a dráhy genetika MeSH
- oxidace-redukce MeSH
- polymerázová řetězová reakce s reverzní transkripcí MeSH
- proteom analýza MeSH
- regulace genové exprese * MeSH
- síra metabolismus MeSH
- stanovení celkové genové exprese MeSH
- sulfidy metabolismus MeSH
- železnaté sloučeniny metabolismus MeSH
- železo metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- bakteriální proteiny MeSH
- proteom MeSH
- pyrite MeSH Prohlížeč
- síra MeSH
- sulfidy MeSH
- železnaté sloučeniny MeSH
- železo MeSH
In contrast to iron-oxidizing Acidithiobacillus ferrooxidans, A. ferrooxidans from a stationary phase elemental sulfur-oxidizing culture exhibited a lag phase in pyrite oxidation, which is similar to its behaviour during ferrous iron oxidation. The ability of elemental sulfur-oxidizing A. ferrooxidans to immediately oxidize ferrous iron or pyrite without a lag phase was only observed in bacteria obtained from growing cultures with elemental sulfur. However, these cultures that shifted to ferrous iron oxidation showed a low rate of ferrous iron oxidation while no growth was observed. Two-dimensional gel electrophoresis was used for a quantitative proteomic analysis of the adaptation process when bacteria were switched from elemental sulfur to ferrous iron. A comparison of total cell lysates revealed 39 proteins whose increase or decrease in abundance was related to this phenotypic switching. However, only a few proteins were closely related to iron and sulfur metabolism. Reverse-transcription quantitative PCR was used to further characterize the bacterial adaptation process. The expression profiles of selected genes primarily involved in the ferrous iron oxidation indicated that phenotypic switching is a complex process that includes the activation of genes encoding a membrane protein, maturation proteins, electron transport proteins and their regulators.
Citace poskytuje Crossref.org