Proteomic Insights into the Adaptation of Acidithiobacillus ferridurans to Municipal Solid Waste Incineration Residues for Enhanced Bioleaching Efficiency
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
40202717
PubMed Central
PMC12053936
DOI
10.1021/acs.jproteome.4c00527
Knihovny.cz E-zdroje
- Klíčová slova
- Acidithiobacillus, adaptation, bioleaching, diaPASEF proteomics, metal recovery, municipal solid waste incineration residues,
- MeSH
- Acidithiobacillus * metabolismus genetika fyziologie MeSH
- bakteriální proteiny * metabolismus genetika MeSH
- fyziologická adaptace * MeSH
- proteom * MeSH
- proteomika * metody MeSH
- tuhý odpad * MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- bakteriální proteiny * MeSH
- proteom * MeSH
- tuhý odpad * MeSH
Acidithiobacillus spp. have traditionally been utilized to extract metals from mineral ores through bioleaching. This process has recently expanded to include artificial ores, such as those derived from municipal solid waste incineration (MSWI) residues. Previous studies have indicated that microbial adaptation enhances bioleaching efficiency, prompting this study to identify proteins involved in the adaptation of A. ferridurans to MSWI residues. We employed data-independent acquisition-parallel accumulation serial fragmentation to determine the proteomic response of A. ferridurans DSM 583 to three distinct materials: bottom ash (BA), kettle ash (KA), and filter ash (FA), which represent typical MSWI residues. Our findings indicate that, irrespective of the residue type, a suite of membrane transporters, porins, efflux pumps, and specific electron and cation transfer proteins was notably upregulated. The upregulation of certain proteins involved in anaerobic pathways suggested the development of a spontaneous microaerobic environment, which minimally impacted the bioleaching efficiency. Additionally, the adaptation was most efficient at half the target FA concentration, marked by a significant increase in the detoxification and efflux systems required by microorganisms to tolerate high heavy metal concentrations. Given that metal recovery peaked at lower FA concentrations for most metals of interest, further adaptation at the level of protein expression may not be warranted for improved bioleaching outcomes.
Department of Biochemistry Faculty of Science Masaryk University Brno 625 00 Czech Republic
Department of Chemistry Faculty of Science Masaryk University Brno 625 00 Czech Republic
Department of Geological Sciences Faculty of Science Masaryk University Brno 611 37 Czech Republic
Zobrazit více v PubMed
Ashraf M. S.; Ghouleh Z.; Shao Y. Production of Eco-Cement Exclusively from Municipal Solid Waste Incineration Residues. Resour Conserv Recycl 2019, 149, 332–342. 10.1016/j.resconrec.2019.06.018. DOI
Joseph A. M.; Snellings R.; Van den Heede P.; Matthys S.; De Belie N. The Use of Municipal Solid Waste Incineration Ash in Various Building Materials: A Belgian Point of View. Materials 2018, 11 (1), 141.10.3390/ma11010141. PubMed DOI PMC
Funari V.; Mäkinen J.; Salminen J.; Braga R.; Dinelli E.; Revitzer H. Metal Removal from Municipal Solid Waste Incineration Fly Ash: A Comparison between Chemical Leaching and Bioleaching. Waste Management 2017, 60, 397–406. 10.1016/j.wasman.2016.07.025. PubMed DOI
Kremser K.; Maltschnig M.; Schön H.; Jandric A.; Gajdosik M.; Vaculovic T.; Kucera J.; Guebitz G. M. Optimized Biogenic Sulfuric Acid Production and Application in the Treatment of Waste Incineration Residues. Waste Management 2022, 144, 182–190. 10.1016/j.wasman.2022.03.025. PubMed DOI
Kremser K.; Thallner S.; Strbik D.; Spiess S.; Kucera J.; Vaculovic T.; Vsiansky D.; Haberbauer M.; Mandl M.; Guebitz G. M. Leachability of Metals from Waste Incineration Residues by Iron- and Sulfur-Oxidizing Bacteria. J. Environ. Manage 2021, 280, 11173410.1016/j.jenvman.2020.111734. PubMed DOI
Potysz A.; van Hullebusch E. D.; Kierczak J. Perspectives Regarding the Use of Metallurgical Slags as Secondary Metal Resources – A Review of Bioleaching Approaches. J. Environ. Manage 2018, 219, 138–152. 10.1016/j.jenvman.2018.04.083. PubMed DOI
Pathak A.; Srichandan H.; Kim D. J. Column Bioleaching of Metals from Refinery Spent Catalyst by Acidithiobacillus Thiooxidans: Effect of Operational Modifications on Metal Extraction, Metal Precipitation, and Bacterial Attachment. J. Environ. Manage 2019, 242, 372–383. 10.1016/j.jenvman.2019.04.081. PubMed DOI
Kremser K.; Thallner S.; Spiess S.; Kucera J.; Vaculovic T.; Všianský D.; Haberbauer M.; Guebitz G. M. Bioleaching and Selective Precipitation for Metal Recovery from Basic Oxygen Furnace Slag. Processes 2022, 10 (3), 576.10.3390/pr10030576. DOI
Potysz A.; Kierczak J. Prospective (Bio)Leaching of Historical Copper Slags as an Alternative to Their Disposal. Minerals 2019, 9 (9), 542.10.3390/min9090542. DOI
Qu Y.; Li H.; Wang X.; Tian W.; Shi B.; Yao M.; Zhang Y. Bioleaching of Major, Rare Earth, and Radioactive Elements from Red Mud by Using Indigenous Chemoheterotrophic Bacterium Acetobacter Sp. Minerals 2019, 9 (2), 67.10.3390/min9020067. DOI
Mirazimi S. M. J.; Abbasalipour Z.; Rashchi F. Vanadium Removal from LD Converter Slag Using Bacteria and Fungi. J. Environ. Manage 2015, 153, 144–151. 10.1016/j.jenvman.2015.02.008. PubMed DOI
Abhilash; Hedrich S.; Schippers A. Distribution of Scandium in Red Mud and Extraction Using Gluconobacter Oxydans. Hydrometallurgy 2021, 202, 10562110.1016/j.hydromet.2021.105621. DOI
Bellenberg S.; Huynh D.; Poetsch A.; Sand W.; Vera M. Proteomics Reveal Enhanced Oxidative Stress Responses and Metabolic Adaptation in Acidithiobacillus Ferrooxidans Biofilm Cells on Pyrite. Front Microbiol 2019, 10, 592.10.3389/fmicb.2019.00592. PubMed DOI PMC
Vera M.; Krok B.; Bellenberg S.; Sand W.; Poetsch A. Shotgun Proteomics Study of Early Biofilm Formation Process of Acidithiobacillus Ferrooxidans ATCC 23270 on Pyrite. Proteomics 2013, 13 (7), 1133–1144. 10.1002/pmic.201200386. PubMed DOI
Almárcegui R. J.; Navarro C. A.; Paradela A.; Albar J. P.; Von Bernath D.; Jerez C. A. New Copper Resistance Determinants in the Extremophile Acidithiobacillus Ferrooxidans: A Quantitative Proteomic Analysis. J. Proteome Res. 2014, 13 (2), 946–960. 10.1021/pr4009833. PubMed DOI
Almárcegui R. J.; Navarro C. A.; Paradela A.; Albar J. P.; von Bernath D.; Jerez C. A. Response to Copper of Acidithiobacillus Ferrooxidans ATCC 23270 Grown in Elemental Sulfur. Res. Microbiol 2014, 165 (9), 761–772. 10.1016/j.resmic.2014.07.005. PubMed DOI
Martínez-Bussenius C.; Navarro C. A.; Orellana L.; Paradela A.; Jerez C. A. Global Response of Acidithiobacillus Ferrooxidans ATCC 53993 to High Concentrations of Copper: A Quantitative Proteomics Approach. J. Proteomics 2016, 145, 37–45. 10.1016/j.jprot.2016.03.039. PubMed DOI
Ramos-Zúñiga J.; Gallardo S.; Martínez-Bussenius C.; Norambuena R.; Navarro C. A.; Paradela A.; Jerez C. A. Response of the Biomining Acidithiobacillus Ferrooxidans to High Cadmium Concentrations. J. Proteomics 2019, 198, 132–144. 10.1016/j.jprot.2018.12.013. PubMed DOI
Norris P. R.; Laigle L.; Slade S. Cytochromes in Anaerobic Growth of Acidithiobacillus Ferrooxidans. Microbiology (N Y) 2018, 164 (3), 383–394. 10.1099/mic.0.000616. PubMed DOI
Kucera J.; Lochman J.; Bouchal P.; Pakostova E.; Mikulasek K.; Hedrich S.; Janiczek O.; Mandl M.; Johnson D. B. A Model of Aerobic and Anaerobic Metabolism of Hydrogen in the Extremophile Acidithiobacillus Ferrooxidans. Front Microbiol 2020, 11, 3003.10.3389/fmicb.2020.610836. PubMed DOI PMC
Khaleque H. N.; Shafique R.; Kaksonen A. H.; Boxall N. J.; Watkin E. L. J. Quantitative Proteomics Using SWATH-MS Identifies Mechanisms of Chloride Tolerance in the Halophilic Acidophile Acidihalobacter Prosperus DSM 14174. Res. Microbiol 2018, 169, 638.10.1016/j.resmic.2018.07.002. PubMed DOI
Moya-Beltrán A.; Beard S.; Rojas-Villalobos C.; Issotta F.; Gallardo Y.; Ulloa R.; Giaveno A.; Degli Esposti M.; Johnson D. B.; Quatrini R. Genomic Evolution of the Class Acidithiobacillia: Deep-Branching Proteobacteria Living in Extreme Acidic Conditions. ISME J. 2021, 15 (11), 3221–3238. 10.1038/s41396-021-00995-x. PubMed DOI PMC
Wiśniewski J. R.; Zougman A.; Nagaraj N.; Mann M. Universal Sample Preparation Method for Proteome Analysis. Nat. Methods 2009, 6 (5), 359–362. 10.1038/nmeth.1322. PubMed DOI
Szklarczyk D.; Kirsch R.; Koutrouli M.; Nastou K.; Mehryary F.; Hachilif R.; Gable A. L.; Fang T.; Doncheva N. T.; Pyysalo S.; Bork P.; Jensen L. J.; Von Mering C. The STRING Database in 2023: Protein–Protein Association Networks and Functional Enrichment Analyses for Any Sequenced Genome of Interest. Nucleic Acids Res. 2023, 51 (D1), D638.10.1093/nar/gkac1000. PubMed DOI PMC
Perez-Riverol Y.; Bai J.; Bandla C.; García-Seisdedos D.; Hewapathirana S.; Kamatchinathan S.; Kundu D. J.; Prakash A.; Frericks-Zipper A.; Eisenacher M.; Walzer M.; Wang S.; Brazma A.; Vizcaíno J. A. The PRIDE Database Resources in 2022: A Hub for Mass Spectrometry-Based Proteomics Evidences. Nucleic Acids Res. 2022, 50 (D1), D543–D552. 10.1093/nar/gkab1038. PubMed DOI PMC
Appia-ayme C.; Guiliani N.; Ratouchniak J.; Bonnefoy V. Characterization of an Operon Encoding Two c -Type Cytochromes, an Aa 3 -Type Cytochrome Oxidase, and Rusticyanin in Thiobacillus Ferrooxidans ATCC 33020. Appl. Environ. Microbiol. 1999, 65 (11), 4781–4787. 10.1128/AEM.65.11.4781-4787.1999. PubMed DOI PMC
Yarzábal A.; Appia-Ayme C.; Ratouchniak J.; Bonnefoy V. Regulation of the Expression of the Acidithiobacillus Ferrooxidans Rus Operon Encoding Two Cytochromes c, a Cytochrome Oxidase and Rusticyanin. Microbiology (N Y) 2004, 150 (7), 2113–2123. 10.1099/mic.0.26966-0. PubMed DOI
Levicán G.; Bruscella P.; Guacunano M.; Inostroza C.; Bonnefoy V.; Holmes D. S.; Jedlicki E. Characterization of the PetI and Res Operons of Acidithiobacillus Ferrooxidans. J. Bacteriol. 2002, 184 (5), 1498–1501. 10.1128/JB.184.5.1498-1501.2002. PubMed DOI PMC
Bruscella P.; Appia-Ayme C.; Levicán G.; Ratouchniak J.; Jedlicki E.; Holmes D. S.; Bonnefoy V. Differential Expression of Two Bc1 Complexes in the Strict Acidophilic Chemolithoautotrophic Bacterium Acidithiobacillus Ferrooxidans Suggests a Model for Their Respective Roles in Iron or Sulfur Oxidation. Microbiology (N Y) 2007, 153 (1), 102–110. 10.1099/mic.0.2006/000067-0. PubMed DOI
Kucera J.; Bouchal P.; Lochman J.; Potesil D.; Janiczek O.; Zdrahal Z.; Mandl M. Ferrous Iron Oxidation by Sulfur-Oxidizing Acidithiobacillus Ferrooxidans and Analysis of the Process at the Levels of Transcription and Protein Synthesis. Antonie Van Leeuwenhoek 2013, 103 (4), 905–919. 10.1007/s10482-012-9872-2. PubMed DOI
Jung H.; Kim J.; Inaba Y.; Moutushi T. T.; Castaldi M. J.; West A. C.; Banta S. Overexpression of AcoP in Acidithiobacillus Ferrooxidans for Enhanced Copper Reclamation. ACS ES&T Eng. 2023, 3 (10), 1468–1475. 10.1021/acsestengg.3c00106. DOI
Kucera J.; Pakostova E.; Lochman J.; Janiczek O.; Mandl M. Are There Multiple Mechanisms of Anaerobic Sulfur Oxidation with Ferric Iron in Acidithiobacillus Ferrooxidans?. Res. Microbiol 2016, 167 (5), 357–366. 10.1016/j.resmic.2016.02.004. PubMed DOI
Kucera J.; Sedo O.; Potesil D.; Janiczek O.; Zdrahal Z.; Mandl M. Comparative Proteomic Analysis of Sulfur-Oxidizing Acidithiobacillus Ferrooxidans CCM 4253 Cultures Having Lost the Ability to Couple Anaerobic Elemental Sulfur Oxidation with Ferric Iron Reduction. Res. Microbiol 2016, 167 (7), 587–594. 10.1016/j.resmic.2016.06.009. PubMed DOI
Kucera J.; Bouchal P.; Cerna H.; Potesil D.; Janiczek O.; Zdrahal Z.; Mandl M. Kinetics of Anaerobic Elemental Sulfur Oxidation by Ferric Iron in Acidithiobacillus Ferrooxidans and Protein Identification by Comparative 2-DE-MS/MS. Antonie Van Leeuwenhoek 2012, 101 (3), 561–573. 10.1007/s10482-011-9670-2. PubMed DOI
Borisov V. B.; Gennis R. B.; Hemp J.; Verkhovsky M. I. The Cytochrome Bd Respiratory Oxygen Reductases. Biochim. Biophys. Acta 2011, 1807 (11), 1398–1413. 10.1016/j.bbabio.2011.06.016. PubMed DOI PMC
Wang R.; Lin J.-Q.; Liu X.-M.; Pang X.; Zhang C.-J.; Yang C.-L.; Gao X.-Y.; Lin C.-M.; Li Y.-Q.; Li Y.; Lin J.-Q.; Chen L.-X. Sulfur Oxidation in the Acidophilic Autotrophic Acidithiobacillus Spp. Front Microbiol 2019, 9, 3290.10.3389/fmicb.2018.03290. PubMed DOI PMC
Koebnik R.; Locher K. P.; Van Gelder P. Structure and Function of Bacterial Outer Membrane Proteins: Barrels in a Nutshell. Mol. Microbiol. 2000, 37 (2), 239–253. 10.1046/j.1365-2958.2000.01983.x. PubMed DOI
Zgurskaya H. I.; Krishnamoorthy G.; Ntreh A.; Lu S. Mechanism and Function of the Outer Membrane Channel TolC in Multidrug Resistance and Physiology of Enterobacteria. Front. Microbiol. 2011, 2, 189.10.3389/FMICB.2011.00189. PubMed DOI PMC
Kulathila R.; Kulathila R.; Indic M.; van den Berg B.; van Veen H. W. Crystal Structure of Escherichia Coli CusC, the Outer Membrane Component of a Heavy Metal Efflux Pump. PLoS One 2011, 6 (1), e1561010.1371/journal.pone.0015610. PubMed DOI PMC
Huang L.; Guo F.; Li X.; Wang M.; Zhu D.; Wang M.; Jia R.; Chen S.; Zhao X.; Zhang S.; Gao Q.; Yang Q.; Wu Y.; Huang J.; Tian B.; Ou X.; Sun D.; Mao S.; Zhang L.; Yu Y. L.; Götz F.; Cheng A.; Liu M. Functional Characterization of Two TolC in the Resistance to Drugs and Metals and in the Virulence of Riemerella Anatipestifer. Appl. Environ. Microbiol. 2023, 89 (12), e01308-2310.1128/AEM.01308-23. PubMed DOI PMC
Yamaguchi A.; Nakashima R.; Sakurai K. Structural Basis of RND-Type Multidrug Exporters. Front. Microbiol. 2015, 6, 327.10.3389/fmicb.2015.00327. PubMed DOI PMC
Klenotic P. A.; Moseng M. A.; Morgan C. E.; Yu E. W. Structural and Functional Diversity of RND Transporters. Chem. Rev. 2021, 121 (9), 5378.10.1021/acs.chemrev.0c00621. PubMed DOI PMC
Martínez-Bussenius C.; Navarro C. A.; Jerez C. A. Microbial Copper Resistance: Importance in Biohydrometallurgy. Microb Biotechnol 2017, 10 (2), 279–295. 10.1111/1751-7915.12450. PubMed DOI PMC
Nies D. H. Efflux-Mediated Heavy Metal Resistance in Prokaryotes. FEMS Microbiol Rev. 2003, 27 (2–3), 313–339. 10.1016/S0168-6445(03)00048-2. PubMed DOI
Hsieh Y. J.; Wanner B. L. Global Regulation by the Seven-Component Pi Signaling System. Curr. Opin Microbiol 2010, 13 (2), 198.10.1016/j.mib.2010.01.014. PubMed DOI PMC
Inaba Y.; West A. C.; Banta S.; Kelly R. M. Glutathione Synthetase Overexpression in Acidithiobacillus Ferrooxidans Improves Halotolerance of Iron Oxidation. Appl. Environ. Microbiol. 2021, 87 (20), 1–9. 10.1128/AEM.01518-21. PubMed DOI PMC
Shi Y.; Wu W.; Yang Y.; Liu X.; Lin J.; Liu X.; Lin J.; Pang X. Gene Knockout of Glutathione Reductase Results in Increased Sensitivity to Heavy Metals in Acidithiobacillus Caldus. Front. Microbiol. 2023, 14, 125033010.3389/fmicb.2023.1250330. PubMed DOI PMC
Xia J. L.; Wu S.; Zhang R. Y.; Zhang C. G.; He H.; Jiang H. C.; Nie Z. Y.; Qiu G. Z. Effects of Copper Exposure on Expression of Glutathione-Related Genes in Acidithiobacillus Ferrooxidans. Curr. Microbiol. 2011, 62 (5), 1460–1466. 10.1007/s00284-011-9881-9. PubMed DOI
Sharma R.; Rensing C.; Rosen B. P.; Mitra B. The ATP Hydrolytic Activity of Purified ZntA, a Pb(II)/Cd(II)/Zn(II)- Translocating ATPase from Escherichia Coli. J. Biol. Chem. 2000, 275 (6), 3873–3878. 10.1074/jbc.275.6.3873. PubMed DOI
Navarro C. a.; Orellana L. H.; Mauriaca C.; Jerez C. a. Transcriptional and Functional Studies of Acidithiobacillus Ferrooxidans Genes Related to Survival in the Presence of Copper. Appl. Environ. Microbiol. 2009, 75 (19), 6102–6109. 10.1128/AEM.00308-09. PubMed DOI PMC
Cristelo N.; Segadães L.; Coelho J.; Chaves B.; Sousa N. R.; de Lurdes Lopes M. Recycling Municipal Solid Waste Incineration Slag and Fly Ash as Precursors in Low-Range Alkaline Cements. Waste Management 2020, 104, 60–73. 10.1016/j.wasman.2020.01.013. PubMed DOI
Northey S.; Mohr S.; Mudd G. M.; Weng Z.; Giurco D. Modelling Future Copper Ore Grade Decline Based on a Detailed Assessment of Copper Resources and Mining. Resour Conserv Recycl 2014, 83, 190–201. 10.1016/j.resconrec.2013.10.005. DOI
Calvo G.; Mudd G.; Valero A.; Valero A. Decreasing Ore Grades in Global Metallic Mining: A Theoretical Issue or a Global Reality?. Resources 2016, 5 (4), 36.10.3390/resources5040036. DOI
Maluleke M. D.; Kotsiopoulos A.; Govender-Opitz E.; Harrison S. T. L. Exploring Microbial Adaptation of Immobilised Acidophilic Cultures to Improve Microbial Oxidation Rates and Copper Tolerance in E-Waste Bioleaching. Miner Eng. 2024, 207, 10856010.1016/j.mineng.2023.108560. DOI
Haghshenas D. F.; Alamdari E. K.; Torkmahalleh M. A.; Bonakdarpour B.; Nasernejad B. Adaptation of Acidithiobacillus Ferrooxidans to High Grade Sphalerite Concentrate. Miner Eng. 2009, 22 (15), 1299–1306. 10.1016/j.mineng.2009.07.011. DOI
Gomes H. I.; Funari V.; Mayes W. M.; Rogerson M.; Prior T. J. Recovery of Al, Cr and V from Steel Slag by Bioleaching: Batch and Column Experiments. J. Environ. Manage 2018, 222, 30–36. 10.1016/j.jenvman.2018.05.056. PubMed DOI
Brandl H.; Bosshard R.; Wegmann M. Computer-Munching Microbes: Metal Leaching from Electronic Scrap by Bacteria and Fungi. Hydrometallurgy 2001, 59 (2–3), 319–326. 10.1016/S0304-386X(00)00188-2. DOI
Gay-Fraret J.; Ardissone S.; Kambara K.; Broughton W. J.; Deakin W. J.; Le Quéré A. Cyclic-β-Glucans of Rhizobium (Sinorhizobium) Sp. Strain NGR234 Are Required for Hypo-Osmotic Adaptation, Motility, and Efficient Symbiosis with Host Plants. FEMS Microbiol. Lett. 2012, 333 (1), 28–36. 10.1111/j.1574-6968.2012.02595.x. PubMed DOI
Valdés J.; Pedroso I.; Quatrini R.; Dodson R. J.; Tettelin H.; Blake R.; Eisen J. A.; Holmes D. S. Acidithiobacillus Ferrooxidans Metabolism: From Genome Sequence to Industrial Applications. BMC Genomics 2008, 9, 597.10.1186/1471-2164-9-597. PubMed DOI PMC
Neumann M.; Leimkühler S. Heavy Metal Ions Inhibit Molybdoenzyme Activity by Binding to the Dithiolene Moiety of Molybdopterin in Escherichia Coli. FEBS J. 2008, 275 (22), 5678–5689. 10.1111/j.1742-4658.2008.06694.x. PubMed DOI