A Model of Aerobic and Anaerobic Metabolism of Hydrogen in the Extremophile Acidithiobacillus ferrooxidans
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
33329503
PubMed Central
PMC7735108
DOI
10.3389/fmicb.2020.610836
Knihovny.cz E-zdroje
- Klíčová slova
- Acidithiobacillus, extremophiles, ferric iron reduction, hydrogen metabolism, multi-omics, oxygen reduction,
- Publikační typ
- časopisecké články MeSH
Hydrogen can serve as an electron donor for chemolithotrophic acidophiles, especially in the deep terrestrial subsurface and geothermal ecosystems. Nevertheless, the current knowledge of hydrogen utilization by mesophilic acidophiles is minimal. A multi-omics analysis was applied on Acidithiobacillus ferrooxidans growing on hydrogen, and a respiratory model was proposed. In the model, [NiFe] hydrogenases oxidize hydrogen to two protons and two electrons. The electrons are used to reduce membrane-soluble ubiquinone to ubiquinol. Genetically associated iron-sulfur proteins mediate electron relay from the hydrogenases to the ubiquinone pool. Under aerobic conditions, reduced ubiquinol transfers electrons to either cytochrome aa 3 oxidase via cytochrome bc 1 complex and cytochrome c 4 or the alternate directly to cytochrome bd oxidase, resulting in proton efflux and reduction of oxygen. Under anaerobic conditions, reduced ubiquinol transfers electrons to outer membrane cytochrome c (ferrireductase) via cytochrome bc 1 complex and a cascade of electron transporters (cytochrome c 4, cytochrome c 552, rusticyanin, and high potential iron-sulfur protein), resulting in proton efflux and reduction of ferric iron. The proton gradient generated by hydrogen oxidation maintains the membrane potential and allows the generation of ATP and NADH. These results further clarify the role of extremophiles in biogeochemical processes and their impact on the composition of the deep terrestrial subsurface.
Department of Biochemistry Faculty of Science Masaryk University Brno Czechia
Institute of Biosciences Technische Universität Bergakademie Freiberg Freiberg Germany
School of Biological Sciences College of Natural Sciences Bangor University Bangor United Kingdom
Zobrazit více v PubMed
Amils R. (2015). Technological challenges to understanding the microbial ecology of deep subsurface ecosystems. PubMed DOI
Armstrong F. A., Albracht S. P. (2005). [NiFe]-hydrogenases: spectroscopic and electrochemical definition of reactions and intermediates. PubMed DOI
Bagnoud A., Chourey K., Hettich R. L., De Bruijn I., Andersson A. F., Leupin O. X., et al. (2016). Reconstructing a hydrogen-driven microbial metabolic network in Opalinus Clay rock. PubMed DOI PMC
Bauermeister A., Rettberg P., Flemming H.-C. C. (2014). Growth of the acidophilic iron-sulfur bacterium DOI
Bird L. J., Bonnefoy V., Newman D. K. (2011). Bioenergetic challenges of microbial iron metabolisms. PubMed DOI
Blair C. C., D’Hondt S., Spivack A. J., Kingsley R. H. (2007). Radiolytic hydrogen and microbial respiration in subsurface sediments. PubMed DOI
Bonnefoy V., Grail B. M., Johnson D. B. (2018). Salt stress-induced loss of iron oxidoreduction activities and reacquisition of that phenotype depend on rus operon transcription in PubMed DOI PMC
Borisov V. B., Gennis R. B., Hemp J., Verkhovsky M. I. (2011). The cytochrome bd respiratory oxygen reductases. PubMed DOI PMC
Bouchal P., Roumeliotis T., Hrstka R., Nenutil R., Vojtesek B., Garbis S. D. (2009). Biomarker discovery in low-grade breast cancer using isobaric stable isotope tags and two-dimensional liquid chromatography-tandem mass spectrometry (iTRAQ-2DLC-MS/MS) based quantitative proteomic analysis. PubMed DOI
Brasseur G., Levican G., Bonnefoy V., Holmes D., Jedlicki E., Lemesle-Meunier D. (2004). Apparent redundancy of electron transfer pathways via bc1 complexes and terminal oxidases in the extremophilic chemolithoautotrophic PubMed DOI
Bruscella P., Cassagnaud L., Ratouchniak J., Brasseur G., Lojou E., Amils R., et al. (2005). The HiPIP from the acidophilic PubMed DOI
Bushnell B., Rood J., Singer E. (2017). BBMerge – accurate paired shotgun read merging via overlap. PubMed DOI PMC
Carere C. R., Hards K., Houghton K. M., Power J. F., McDonald B., Collet C., et al. (2017). Mixotrophy drives niche expansion of verrucomicrobial methanotrophs. PubMed DOI PMC
Chapelle F. H., O’Neill K., Bradley P. M., Methé B. A., Ciufo S. A., Knobel L. L., et al. (2002). A hydrogen-based subsurface microbial community dominated by methanogens. PubMed DOI
Collins B. C., Hunter C. L., Liu Y., Schilling B., Rosenberger G., Bader S. L., et al. (2017). Multi-laboratory assessment of reproducibility, qualitative and quantitative performance of SWATH-mass spectrometry. PubMed DOI PMC
Corbett C. M., Ingledew W. J. (1987). Is Fe3+/2+ cycling an intermediate in sulphur oxidation by Fe2+-grown DOI
Drobner E., Huber H., Stetter K., Mikrobiologie L., Regensburg U. (1990). PubMed DOI PMC
Esparza M., Cárdenas J. P., Bowien B., Jedlicki E., Holmes D. S. (2010). Genes and pathways for CO2 fixation in the obligate, chemolithoautotrophic acidophile, PubMed DOI PMC
Esparza M., Jedlicki E., González C., Dopson M., Holmes D. S. (2019). Effect of CO2 concentration on uptake and assimilation of inorganic carbon in the extreme acidophile PubMed DOI PMC
Fischer J., Quentmeier A., Kostka S., Kraft R., Friedrich C. G. (1996). Purification and characterization of the hydrogenase from PubMed DOI
Hafidh S., Potěšil D., Müller K., Fíla J., Michailidis C., Herrmannová A., et al. (2018). Dynamics of the pollen sequestrome defined by subcellular coupled omics. PubMed DOI PMC
Haider S., Pal R. (2013). Integrated analysis of transcriptomic and proteomic data. PubMed DOI PMC
Haladjian J., Bianco P., Nunzi F., Bruschi M. (1994). A permselective-membrane electrode for the electrochemical study of redox proteins. Application to cytochrome c552 from DOI
Haladjian J., Bruschi M., Nunzi F., Bianco P. (1993). Electron-transfer reaction of rusticyanin, a “blue”-copper protein from Thiobacillus ferrooxidans, at modified gold electrodes. DOI
Hedrich S., Johnson D. B. (2013). Aerobic and anaerobic oxidation of hydrogen by acidophilic bacteria. PubMed DOI
Huber G., Drobner E., Huber H., Stetter K. O. (1992). Growth by aerobic oxidation of molecular hydrogen in archaea —a metabolic property so far unknown for this domain. DOI
Ingledew W. J., Cobley J. G. (1980). A potentiometric and kinetic study on the respiratory chain of ferrous-iron-grown Thiobacillus ferrooxidans. PubMed DOI
Ingledew W. J. J. (1982). Thiobacillus ferrooxidans the bioenergetics of an acidophilic chemolithotroph. PubMed DOI
Islam Z. F., Cordero P. R. F., Greening C. (2019). Putative iron-sulfur proteins are required for hydrogen consumption and enhance survival of mycobacteria. PubMed DOI PMC
Islam Z. F., Welsh C., Bayly K., Grinter R., Southam G., Gagen E. J., et al. (2020). A widely distributed hydrogenase oxidises atmospheric H2 during bacterial growth. PubMed DOI PMC
Janacova L., Faktor J., Capkova L., Paralova V., Pospisilova A., Podhorec J., et al. (2020). SWATH-MS analysis of FFPE tissues identifies stathmin as a potential marker of endometrial cancer in patients exposed to tamoxifen. PubMed DOI
Johnson D. B. (2012). Geomicrobiology of extremely acidic subsurface environments. PubMed DOI
Johnson D. B. (2015). Biomining goes underground. DOI
Johnson D. B., Hallberg K. B. (2007). “Techniques for detecting and identifying acidophilic mineral-oxidizing microorganisms,” in DOI
Johnson D. B., Hedrich S., Pakostova E. (2017). Indirect redox transformations of iron, copper, and chromium catalyzed by extremely acidophilic bacteria. PubMed DOI PMC
Kucera J., Bouchal P., Cerna H., Potesil D., Janiczek O., Zdrahal Z., et al. (2012). Kinetics of anaerobic elemental sulfur oxidation by ferric iron in Acidithiobacillus ferrooxidans and protein identification by comparative 2-DE-MS/MS. PubMed DOI
Kucera J., Pakostova E., Lochman J., Janiczek O., Mandl M. (2016a). Are there multiple mechanisms of anaerobic sulfur oxidation with ferric iron in PubMed DOI
Kucera J., Sedo O., Potesil D., Janiczek O., Zdrahal Z., Mandl M. (2016b). Comparative proteomic analysis of sulfur-oxidizing PubMed DOI
Love M. I., Huber W., Anders S. (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. PubMed DOI PMC
Lubitz W., Ogata H., Rüdiger O., Reijerse E. (2014). Hydrogenases. PubMed DOI
Mayhew L. E., Ellison E. T., McCollom T. M., Trainor T. P., Templeton A. S. (2013). Hydrogen generation from low-temperature water–rock reactions. DOI
McMahon S., Parnell J. (2014). Weighing the deep continental biosphere. PubMed DOI
Mo H., Chen Q., Du J., Tang L., Qin F., Miao B., et al. (2011). Ferric reductase activity of the ArsH protein from PubMed DOI
Mohammadi S. S., Schmitz R. A., Pol A., Berben T., Jetten M. S. M., Op den Camp H. J. M. (2019). The acidophilic methanotroph Methylacidimicrobium tartarophylax 4AC grows as autotroph on H2 under microoxic conditions. PubMed DOI PMC
Morgan M., Anders S., Lawrence M., Aboyoun P., Pages H., Gentleman R. (2009). ShortRead: a bioconductor package for input, quality assessment and exploration of high-throughput sequence data. PubMed DOI PMC
Norris P. R., Falagán C., Moya-Beltrán A., Castro M., Quatrini R., Johnson D. B. (2020). Acidithiobacillus ferrianus sp. nov.: an ancestral extremely acidophilic and facultatively anaerobic chemolithoautotroph. PubMed DOI PMC
Norris P. R., Laigle L., Slade S. (2018). Cytochromes in anaerobic growth of PubMed DOI
Nouailler M., Bruscella P., Lojou E., Lebrun R., Bonnefoy V., Guerlesquin F. (2006). Structural analysis of the HiPIP from the acidophilic bacteria: PubMed DOI
Ohmura N., Sasaki K., Matsumoto N., Saiki H. (2002). Anaerobic respiration using Fe3+, S0, and H2 in the chemolithoautotrophic bacterium Acidithiobacillus ferrooxidans. PubMed DOI PMC
Osorio H., Mangold S., Denis Y., Ñancucheo I., Esparza M., Johnson D. B., et al. (2013). Anaerobic sulfur metabolism coupled to dissimilatory iron reduction in the extremophile PubMed DOI PMC
Pronk J. T., Meijer W. M., Hazeu W., Van Dijken J. P., Bos P., Kuenen J. G. (1991). Growth of PubMed DOI PMC
Puente-Sánchez F., Arce-Rodríguez A., Oggerin M., García-Villadangos M., Moreno-Paz M., Blanco Y., et al. (2018). Viable cyanobacteria in the deep continental subsurface. PubMed DOI PMC
Puente-Sánchez F., Moreno-Paz M., Rivas L. A., Cruz-Gil P., García-Villadangos M., Gómez M. J., et al. (2014). Deep subsurface sulfate reduction and methanogenesis in the iberian pyrite belt revealed through geochemistry and molecular biomarkers. PubMed DOI
Quatrini R., Appia-Ayme C., Denis Y., Jedlicki E., Holmes D. S., Bonnefoy V. (2009). Extending the models for iron and sulfur oxidation in the extreme acidophile PubMed DOI PMC
Roger M., Castelle C., Guiral M., Infossi P., Lojou E., Giudici-Orticoni M.-T., et al. (2012). Mineral respiration under extreme acidic conditions: from a supramolecular organization to a molecular adaptation in PubMed DOI
Schmitz R. A., Pol A., Mohammadi S. S., Hogendoorn C., van Gelder A. H., Jetten M. S. M., et al. (2020). The thermoacidophilic methanotroph Methylacidiphilum fumariolicum SolV oxidizes subatmospheric H2 with a high-affinity, membrane-associated [NiFe] hydrogenase. PubMed DOI PMC
Schröder O., Bleijlevens B., de Jongh T. E., Chen Z., Li T., Fischer J., et al. (2007). Characterization of a cyanobacterial-like uptake [NiFe] hydrogenase: EPR and FTIR spectroscopic studies of the enzyme from PubMed DOI
Søndergaard D., Pedersen C. N. S., Greening C. (2016). HydDB: a web tool for hydrogenase classification and analysis. PubMed DOI PMC
Stejskal K., Potěšil D., Zdráhal Z. (2013). Suppression of peptide sample losses in autosampler vials. PubMed DOI
Stevens T. (1997). Lithoautotrophy in the subsurface. DOI
Stookey L. L. (1970). Ferrozine—a new spectrophotometric reagent for iron. DOI
Sugio T., Taha T. M., Takeuchi F. (2009). Ferrous iron production mediated by tetrathionate hydrolase in tetrathionate-, sulfur-, and iron-grown PubMed DOI
ten Brink F., Schoepp-Cothenet B., van Lis R., Nitschke W., Baymann F. (2013). Multiple Rieske/cytb complexes in a single organism. PubMed DOI
Teng Y., Xu Y., Wang X., Christie P. (2019). Function of biohydrogen metabolism and related microbial communities in environmental bioremediation. PubMed DOI PMC
Valdés J., Pedroso I., Quatrini R., Dodson R. J., Tettelin H., Blake R., et al. (2008). PubMed DOI PMC
Vignais P. M., Billoud B. (2007). Occurrence, classification, and biological function of hydrogenases: an overview. PubMed DOI