A Model of Aerobic and Anaerobic Metabolism of Hydrogen in the Extremophile Acidithiobacillus ferrooxidans

. 2020 ; 11 () : 610836. [epub] 20201130

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33329503

Hydrogen can serve as an electron donor for chemolithotrophic acidophiles, especially in the deep terrestrial subsurface and geothermal ecosystems. Nevertheless, the current knowledge of hydrogen utilization by mesophilic acidophiles is minimal. A multi-omics analysis was applied on Acidithiobacillus ferrooxidans growing on hydrogen, and a respiratory model was proposed. In the model, [NiFe] hydrogenases oxidize hydrogen to two protons and two electrons. The electrons are used to reduce membrane-soluble ubiquinone to ubiquinol. Genetically associated iron-sulfur proteins mediate electron relay from the hydrogenases to the ubiquinone pool. Under aerobic conditions, reduced ubiquinol transfers electrons to either cytochrome aa 3 oxidase via cytochrome bc 1 complex and cytochrome c 4 or the alternate directly to cytochrome bd oxidase, resulting in proton efflux and reduction of oxygen. Under anaerobic conditions, reduced ubiquinol transfers electrons to outer membrane cytochrome c (ferrireductase) via cytochrome bc 1 complex and a cascade of electron transporters (cytochrome c 4, cytochrome c 552, rusticyanin, and high potential iron-sulfur protein), resulting in proton efflux and reduction of ferric iron. The proton gradient generated by hydrogen oxidation maintains the membrane potential and allows the generation of ATP and NADH. These results further clarify the role of extremophiles in biogeochemical processes and their impact on the composition of the deep terrestrial subsurface.

Zobrazit více v PubMed

Amils R. (2015). Technological challenges to understanding the microbial ecology of deep subsurface ecosystems. PubMed DOI

Armstrong F. A., Albracht S. P. (2005). [NiFe]-hydrogenases: spectroscopic and electrochemical definition of reactions and intermediates. PubMed DOI

Bagnoud A., Chourey K., Hettich R. L., De Bruijn I., Andersson A. F., Leupin O. X., et al. (2016). Reconstructing a hydrogen-driven microbial metabolic network in Opalinus Clay rock. PubMed DOI PMC

Bauermeister A., Rettberg P., Flemming H.-C. C. (2014). Growth of the acidophilic iron-sulfur bacterium DOI

Bird L. J., Bonnefoy V., Newman D. K. (2011). Bioenergetic challenges of microbial iron metabolisms. PubMed DOI

Blair C. C., D’Hondt S., Spivack A. J., Kingsley R. H. (2007). Radiolytic hydrogen and microbial respiration in subsurface sediments. PubMed DOI

Bonnefoy V., Grail B. M., Johnson D. B. (2018). Salt stress-induced loss of iron oxidoreduction activities and reacquisition of that phenotype depend on rus operon transcription in PubMed DOI PMC

Borisov V. B., Gennis R. B., Hemp J., Verkhovsky M. I. (2011). The cytochrome bd respiratory oxygen reductases. PubMed DOI PMC

Bouchal P., Roumeliotis T., Hrstka R., Nenutil R., Vojtesek B., Garbis S. D. (2009). Biomarker discovery in low-grade breast cancer using isobaric stable isotope tags and two-dimensional liquid chromatography-tandem mass spectrometry (iTRAQ-2DLC-MS/MS) based quantitative proteomic analysis. PubMed DOI

Brasseur G., Levican G., Bonnefoy V., Holmes D., Jedlicki E., Lemesle-Meunier D. (2004). Apparent redundancy of electron transfer pathways via bc1 complexes and terminal oxidases in the extremophilic chemolithoautotrophic PubMed DOI

Bruscella P., Cassagnaud L., Ratouchniak J., Brasseur G., Lojou E., Amils R., et al. (2005). The HiPIP from the acidophilic PubMed DOI

Bushnell B., Rood J., Singer E. (2017). BBMerge – accurate paired shotgun read merging via overlap. PubMed DOI PMC

Carere C. R., Hards K., Houghton K. M., Power J. F., McDonald B., Collet C., et al. (2017). Mixotrophy drives niche expansion of verrucomicrobial methanotrophs. PubMed DOI PMC

Chapelle F. H., O’Neill K., Bradley P. M., Methé B. A., Ciufo S. A., Knobel L. L., et al. (2002). A hydrogen-based subsurface microbial community dominated by methanogens. PubMed DOI

Collins B. C., Hunter C. L., Liu Y., Schilling B., Rosenberger G., Bader S. L., et al. (2017). Multi-laboratory assessment of reproducibility, qualitative and quantitative performance of SWATH-mass spectrometry. PubMed DOI PMC

Corbett C. M., Ingledew W. J. (1987). Is Fe3+/2+ cycling an intermediate in sulphur oxidation by Fe2+-grown DOI

Drobner E., Huber H., Stetter K., Mikrobiologie L., Regensburg U. (1990). PubMed DOI PMC

Esparza M., Cárdenas J. P., Bowien B., Jedlicki E., Holmes D. S. (2010). Genes and pathways for CO2 fixation in the obligate, chemolithoautotrophic acidophile, PubMed DOI PMC

Esparza M., Jedlicki E., González C., Dopson M., Holmes D. S. (2019). Effect of CO2 concentration on uptake and assimilation of inorganic carbon in the extreme acidophile PubMed DOI PMC

Fischer J., Quentmeier A., Kostka S., Kraft R., Friedrich C. G. (1996). Purification and characterization of the hydrogenase from PubMed DOI

Hafidh S., Potěšil D., Müller K., Fíla J., Michailidis C., Herrmannová A., et al. (2018). Dynamics of the pollen sequestrome defined by subcellular coupled omics. PubMed DOI PMC

Haider S., Pal R. (2013). Integrated analysis of transcriptomic and proteomic data. PubMed DOI PMC

Haladjian J., Bianco P., Nunzi F., Bruschi M. (1994). A permselective-membrane electrode for the electrochemical study of redox proteins. Application to cytochrome c552 from DOI

Haladjian J., Bruschi M., Nunzi F., Bianco P. (1993). Electron-transfer reaction of rusticyanin, a “blue”-copper protein from Thiobacillus ferrooxidans, at modified gold electrodes. DOI

Hedrich S., Johnson D. B. (2013). Aerobic and anaerobic oxidation of hydrogen by acidophilic bacteria. PubMed DOI

Huber G., Drobner E., Huber H., Stetter K. O. (1992). Growth by aerobic oxidation of molecular hydrogen in archaea —a metabolic property so far unknown for this domain. DOI

Ingledew W. J., Cobley J. G. (1980). A potentiometric and kinetic study on the respiratory chain of ferrous-iron-grown Thiobacillus ferrooxidans. PubMed DOI

Ingledew W. J. J. (1982). Thiobacillus ferrooxidans the bioenergetics of an acidophilic chemolithotroph. PubMed DOI

Islam Z. F., Cordero P. R. F., Greening C. (2019). Putative iron-sulfur proteins are required for hydrogen consumption and enhance survival of mycobacteria. PubMed DOI PMC

Islam Z. F., Welsh C., Bayly K., Grinter R., Southam G., Gagen E. J., et al. (2020). A widely distributed hydrogenase oxidises atmospheric H2 during bacterial growth. PubMed DOI PMC

Janacova L., Faktor J., Capkova L., Paralova V., Pospisilova A., Podhorec J., et al. (2020). SWATH-MS analysis of FFPE tissues identifies stathmin as a potential marker of endometrial cancer in patients exposed to tamoxifen. PubMed DOI

Johnson D. B. (2012). Geomicrobiology of extremely acidic subsurface environments. PubMed DOI

Johnson D. B. (2015). Biomining goes underground. DOI

Johnson D. B., Hallberg K. B. (2007). “Techniques for detecting and identifying acidophilic mineral-oxidizing microorganisms,” in DOI

Johnson D. B., Hedrich S., Pakostova E. (2017). Indirect redox transformations of iron, copper, and chromium catalyzed by extremely acidophilic bacteria. PubMed DOI PMC

Kucera J., Bouchal P., Cerna H., Potesil D., Janiczek O., Zdrahal Z., et al. (2012). Kinetics of anaerobic elemental sulfur oxidation by ferric iron in Acidithiobacillus ferrooxidans and protein identification by comparative 2-DE-MS/MS. PubMed DOI

Kucera J., Pakostova E., Lochman J., Janiczek O., Mandl M. (2016a). Are there multiple mechanisms of anaerobic sulfur oxidation with ferric iron in PubMed DOI

Kucera J., Sedo O., Potesil D., Janiczek O., Zdrahal Z., Mandl M. (2016b). Comparative proteomic analysis of sulfur-oxidizing PubMed DOI

Love M. I., Huber W., Anders S. (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. PubMed DOI PMC

Lubitz W., Ogata H., Rüdiger O., Reijerse E. (2014). Hydrogenases. PubMed DOI

Mayhew L. E., Ellison E. T., McCollom T. M., Trainor T. P., Templeton A. S. (2013). Hydrogen generation from low-temperature water–rock reactions. DOI

McMahon S., Parnell J. (2014). Weighing the deep continental biosphere. PubMed DOI

Mo H., Chen Q., Du J., Tang L., Qin F., Miao B., et al. (2011). Ferric reductase activity of the ArsH protein from PubMed DOI

Mohammadi S. S., Schmitz R. A., Pol A., Berben T., Jetten M. S. M., Op den Camp H. J. M. (2019). The acidophilic methanotroph Methylacidimicrobium tartarophylax 4AC grows as autotroph on H2 under microoxic conditions. PubMed DOI PMC

Morgan M., Anders S., Lawrence M., Aboyoun P., Pages H., Gentleman R. (2009). ShortRead: a bioconductor package for input, quality assessment and exploration of high-throughput sequence data. PubMed DOI PMC

Norris P. R., Falagán C., Moya-Beltrán A., Castro M., Quatrini R., Johnson D. B. (2020). Acidithiobacillus ferrianus sp. nov.: an ancestral extremely acidophilic and facultatively anaerobic chemolithoautotroph. PubMed DOI PMC

Norris P. R., Laigle L., Slade S. (2018). Cytochromes in anaerobic growth of PubMed DOI

Nouailler M., Bruscella P., Lojou E., Lebrun R., Bonnefoy V., Guerlesquin F. (2006). Structural analysis of the HiPIP from the acidophilic bacteria: PubMed DOI

Ohmura N., Sasaki K., Matsumoto N., Saiki H. (2002). Anaerobic respiration using Fe3+, S0, and H2 in the chemolithoautotrophic bacterium Acidithiobacillus ferrooxidans. PubMed DOI PMC

Osorio H., Mangold S., Denis Y., Ñancucheo I., Esparza M., Johnson D. B., et al. (2013). Anaerobic sulfur metabolism coupled to dissimilatory iron reduction in the extremophile PubMed DOI PMC

Pronk J. T., Meijer W. M., Hazeu W., Van Dijken J. P., Bos P., Kuenen J. G. (1991). Growth of PubMed DOI PMC

Puente-Sánchez F., Arce-Rodríguez A., Oggerin M., García-Villadangos M., Moreno-Paz M., Blanco Y., et al. (2018). Viable cyanobacteria in the deep continental subsurface. PubMed DOI PMC

Puente-Sánchez F., Moreno-Paz M., Rivas L. A., Cruz-Gil P., García-Villadangos M., Gómez M. J., et al. (2014). Deep subsurface sulfate reduction and methanogenesis in the iberian pyrite belt revealed through geochemistry and molecular biomarkers. PubMed DOI

Quatrini R., Appia-Ayme C., Denis Y., Jedlicki E., Holmes D. S., Bonnefoy V. (2009). Extending the models for iron and sulfur oxidation in the extreme acidophile PubMed DOI PMC

Roger M., Castelle C., Guiral M., Infossi P., Lojou E., Giudici-Orticoni M.-T., et al. (2012). Mineral respiration under extreme acidic conditions: from a supramolecular organization to a molecular adaptation in PubMed DOI

Schmitz R. A., Pol A., Mohammadi S. S., Hogendoorn C., van Gelder A. H., Jetten M. S. M., et al. (2020). The thermoacidophilic methanotroph Methylacidiphilum fumariolicum SolV oxidizes subatmospheric H2 with a high-affinity, membrane-associated [NiFe] hydrogenase. PubMed DOI PMC

Schröder O., Bleijlevens B., de Jongh T. E., Chen Z., Li T., Fischer J., et al. (2007). Characterization of a cyanobacterial-like uptake [NiFe] hydrogenase: EPR and FTIR spectroscopic studies of the enzyme from PubMed DOI

Søndergaard D., Pedersen C. N. S., Greening C. (2016). HydDB: a web tool for hydrogenase classification and analysis. PubMed DOI PMC

Stejskal K., Potěšil D., Zdráhal Z. (2013). Suppression of peptide sample losses in autosampler vials. PubMed DOI

Stevens T. (1997). Lithoautotrophy in the subsurface. DOI

Stookey L. L. (1970). Ferrozine—a new spectrophotometric reagent for iron. DOI

Sugio T., Taha T. M., Takeuchi F. (2009). Ferrous iron production mediated by tetrathionate hydrolase in tetrathionate-, sulfur-, and iron-grown PubMed DOI

ten Brink F., Schoepp-Cothenet B., van Lis R., Nitschke W., Baymann F. (2013). Multiple Rieske/cytb complexes in a single organism. PubMed DOI

Teng Y., Xu Y., Wang X., Christie P. (2019). Function of biohydrogen metabolism and related microbial communities in environmental bioremediation. PubMed DOI PMC

Valdés J., Pedroso I., Quatrini R., Dodson R. J., Tettelin H., Blake R., et al. (2008). PubMed DOI PMC

Vignais P. M., Billoud B. (2007). Occurrence, classification, and biological function of hydrogenases: an overview. PubMed DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...