A Model of Aerobic and Anaerobic Metabolism of Hydrogen in the Extremophile Acidithiobacillus ferrooxidans
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
33329503
PubMed Central
PMC7735108
DOI
10.3389/fmicb.2020.610836
Knihovny.cz E-zdroje
- Klíčová slova
- Acidithiobacillus, extremophiles, ferric iron reduction, hydrogen metabolism, multi-omics, oxygen reduction,
- Publikační typ
- časopisecké články MeSH
Hydrogen can serve as an electron donor for chemolithotrophic acidophiles, especially in the deep terrestrial subsurface and geothermal ecosystems. Nevertheless, the current knowledge of hydrogen utilization by mesophilic acidophiles is minimal. A multi-omics analysis was applied on Acidithiobacillus ferrooxidans growing on hydrogen, and a respiratory model was proposed. In the model, [NiFe] hydrogenases oxidize hydrogen to two protons and two electrons. The electrons are used to reduce membrane-soluble ubiquinone to ubiquinol. Genetically associated iron-sulfur proteins mediate electron relay from the hydrogenases to the ubiquinone pool. Under aerobic conditions, reduced ubiquinol transfers electrons to either cytochrome aa 3 oxidase via cytochrome bc 1 complex and cytochrome c 4 or the alternate directly to cytochrome bd oxidase, resulting in proton efflux and reduction of oxygen. Under anaerobic conditions, reduced ubiquinol transfers electrons to outer membrane cytochrome c (ferrireductase) via cytochrome bc 1 complex and a cascade of electron transporters (cytochrome c 4, cytochrome c 552, rusticyanin, and high potential iron-sulfur protein), resulting in proton efflux and reduction of ferric iron. The proton gradient generated by hydrogen oxidation maintains the membrane potential and allows the generation of ATP and NADH. These results further clarify the role of extremophiles in biogeochemical processes and their impact on the composition of the deep terrestrial subsurface.
Department of Biochemistry Faculty of Science Masaryk University Brno Czechia
Institute of Biosciences Technische Universität Bergakademie Freiberg Freiberg Germany
School of Biological Sciences College of Natural Sciences Bangor University Bangor United Kingdom
Zobrazit více v PubMed
Amils R. (2015). Technological challenges to understanding the microbial ecology of deep subsurface ecosystems. Environ. Microbiol. Rep. 7 9–10. 10.1111/1758-2229.12219 PubMed DOI
Armstrong F. A., Albracht S. P. (2005). [NiFe]-hydrogenases: spectroscopic and electrochemical definition of reactions and intermediates. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 363 937–954. 10.1098/rsta.2004.1528 PubMed DOI
Bagnoud A., Chourey K., Hettich R. L., De Bruijn I., Andersson A. F., Leupin O. X., et al. (2016). Reconstructing a hydrogen-driven microbial metabolic network in Opalinus Clay rock. Nat. Commun. 7:12770. 10.1038/ncomms12770 PubMed DOI PMC
Bauermeister A., Rettberg P., Flemming H.-C. C. (2014). Growth of the acidophilic iron-sulfur bacterium Acidithiobacillus ferrooxidans under Mars-like geochemical conditions. Planet. Space Sci. 98 205–215. 10.1016/j.pss.2013.09.009 DOI
Bird L. J., Bonnefoy V., Newman D. K. (2011). Bioenergetic challenges of microbial iron metabolisms. Trends Microbiol. 19 330–340. 10.1016/j.tim.2011.05.001 PubMed DOI
Blair C. C., D’Hondt S., Spivack A. J., Kingsley R. H. (2007). Radiolytic hydrogen and microbial respiration in subsurface sediments. Astrobiology 7 951–970. 10.1089/ast.2007.0150 PubMed DOI
Bonnefoy V., Grail B. M., Johnson D. B. (2018). Salt stress-induced loss of iron oxidoreduction activities and reacquisition of that phenotype depend on rus operon transcription in Acidithiobacillus ferridurans. Appl. Environ. Microbiol. 84:e02795-17. 10.1128/aem.02795-17 PubMed DOI PMC
Borisov V. B., Gennis R. B., Hemp J., Verkhovsky M. I. (2011). The cytochrome bd respiratory oxygen reductases. Biochim. Biophys. Acta 1807 1398–1413. 10.1016/j.bbabio.2011.06.016 PubMed DOI PMC
Bouchal P., Roumeliotis T., Hrstka R., Nenutil R., Vojtesek B., Garbis S. D. (2009). Biomarker discovery in low-grade breast cancer using isobaric stable isotope tags and two-dimensional liquid chromatography-tandem mass spectrometry (iTRAQ-2DLC-MS/MS) based quantitative proteomic analysis. J. Proteome Res. 8 362–373. 10.1021/pr800622b PubMed DOI
Brasseur G., Levican G., Bonnefoy V., Holmes D., Jedlicki E., Lemesle-Meunier D. (2004). Apparent redundancy of electron transfer pathways via bc1 complexes and terminal oxidases in the extremophilic chemolithoautotrophic Acidithiobacillus ferrooxidans. Biochim. Biophys. Acta Bioenerg. 1656 114–126. 10.1016/j.bbabio.2004.02.008 PubMed DOI
Bruscella P., Cassagnaud L., Ratouchniak J., Brasseur G., Lojou E., Amils R., et al. (2005). The HiPIP from the acidophilic Acidithiobacillus ferrooxidans is correctly processed and translocated in Escherichia coli, in spite of the periplasm pH difference between these two micro-organisms. Microbiology 151 1421–1431. 10.1099/mic.0.27476-0 PubMed DOI
Bushnell B., Rood J., Singer E. (2017). BBMerge – accurate paired shotgun read merging via overlap. PLoS One 12:e0185056. 10.1371/JOURNAL.PONE.0185056 PubMed DOI PMC
Carere C. R., Hards K., Houghton K. M., Power J. F., McDonald B., Collet C., et al. (2017). Mixotrophy drives niche expansion of verrucomicrobial methanotrophs. ISME J. 11 2599–2610. 10.1038/ismej.2017.112 PubMed DOI PMC
Chapelle F. H., O’Neill K., Bradley P. M., Methé B. A., Ciufo S. A., Knobel L. L., et al. (2002). A hydrogen-based subsurface microbial community dominated by methanogens. Nature 415 312–315. 10.1038/415312a PubMed DOI
Collins B. C., Hunter C. L., Liu Y., Schilling B., Rosenberger G., Bader S. L., et al. (2017). Multi-laboratory assessment of reproducibility, qualitative and quantitative performance of SWATH-mass spectrometry. Nat. Commun. 8:291. 10.1038/s41467-017-00249-5 PubMed DOI PMC
Corbett C. M., Ingledew W. J. (1987). Is Fe3+/2+ cycling an intermediate in sulphur oxidation by Fe2+-grown Thiobacillus ferrooxidans. FEMS Microbiol. Lett. 41 1–6. 10.1111/j.1574-6968.1987.tb02131.x DOI
Drobner E., Huber H., Stetter K., Mikrobiologie L., Regensburg U. (1990). Thiobacillus ferrooxidans, a facultative hydrogen oxidizer. Appl. Environ. Microbiol. 56 2922–2923. 10.1128/aem.56.9.2922-2923.1990 PubMed DOI PMC
Esparza M., Cárdenas J. P., Bowien B., Jedlicki E., Holmes D. S. (2010). Genes and pathways for CO2 fixation in the obligate, chemolithoautotrophic acidophile, Acidithiobacillus ferrooxidans, carbon fixation in A. ferrooxidans. BMC Microbiol. 10:229. 10.1186/1471-2180-10-229 PubMed DOI PMC
Esparza M., Jedlicki E., González C., Dopson M., Holmes D. S. (2019). Effect of CO2 concentration on uptake and assimilation of inorganic carbon in the extreme acidophile Acidithiobacillus ferrooxidans. Front. Microbiol. 10:603. 10.3389/fmicb.2019.00603 PubMed DOI PMC
Fischer J., Quentmeier A., Kostka S., Kraft R., Friedrich C. G. (1996). Purification and characterization of the hydrogenase from Thiobacillus ferrooxidans. Arch. Microbiol. 165 289–296. 10.1007/s002030050329 PubMed DOI
Hafidh S., Potěšil D., Müller K., Fíla J., Michailidis C., Herrmannová A., et al. (2018). Dynamics of the pollen sequestrome defined by subcellular coupled omics. Plant Physiol. 178 258–282. 10.1104/pp.18.00648 PubMed DOI PMC
Haider S., Pal R. (2013). Integrated analysis of transcriptomic and proteomic data. Curr. Genomics 14 91–110. 10.2174/1389202911314020003 PubMed DOI PMC
Haladjian J., Bianco P., Nunzi F., Bruschi M. (1994). A permselective-membrane electrode for the electrochemical study of redox proteins. Application to cytochrome c552 from Thiobacillus ferrooxidans. Anal. Chim. Acta 289 15–20. 10.1016/0003-2670(94)80002-2 DOI
Haladjian J., Bruschi M., Nunzi F., Bianco P. (1993). Electron-transfer reaction of rusticyanin, a “blue”-copper protein from Thiobacillus ferrooxidans, at modified gold electrodes. J. Electroanal. Chem. 352 329–335. 10.1016/0022-0728(93)80276-N DOI
Hedrich S., Johnson D. B. (2013). Aerobic and anaerobic oxidation of hydrogen by acidophilic bacteria. FEMS Microbiol. Lett. 349 40–45. 10.1111/1574-6968.12290 PubMed DOI
Huber G., Drobner E., Huber H., Stetter K. O. (1992). Growth by aerobic oxidation of molecular hydrogen in archaea —a metabolic property so far unknown for this domain. Syst. Appl. Microbiol. 15 502–504. 10.1016/S0723-2020(11)80108-6 DOI
Ingledew W. J., Cobley J. G. (1980). A potentiometric and kinetic study on the respiratory chain of ferrous-iron-grown Thiobacillus ferrooxidans. Biochim. Biophys. Acta 590 141–158. 10.1016/0005-2728(80)90020-1 PubMed DOI
Ingledew W. J. J. (1982). Thiobacillus ferrooxidans the bioenergetics of an acidophilic chemolithotroph. BBA Rev. Bioenerg. 683 89–117. 10.1016/0304-4173(82)90007-6 PubMed DOI
Islam Z. F., Cordero P. R. F., Greening C. (2019). Putative iron-sulfur proteins are required for hydrogen consumption and enhance survival of mycobacteria. Front. Microbiol. 10:2749. 10.3389/fmicb.2019.02749 PubMed DOI PMC
Islam Z. F., Welsh C., Bayly K., Grinter R., Southam G., Gagen E. J., et al. (2020). A widely distributed hydrogenase oxidises atmospheric H2 during bacterial growth. ISME J. 14 2649–2658. 10.1038/s41396-020-0713-4 PubMed DOI PMC
Janacova L., Faktor J., Capkova L., Paralova V., Pospisilova A., Podhorec J., et al. (2020). SWATH-MS analysis of FFPE tissues identifies stathmin as a potential marker of endometrial cancer in patients exposed to tamoxifen. J. Proteome Res. 19 2617–2630. 10.1021/acs.jproteome.0c00064 PubMed DOI
Johnson D. B. (2012). Geomicrobiology of extremely acidic subsurface environments. FEMS Microbiol. Ecol. 81 2–12. 10.1111/j.1574-6941.2011.01293.x PubMed DOI
Johnson D. B. (2015). Biomining goes underground. Nat. Geosci. 8 165–166. 10.1038/ngeo2384 DOI
Johnson D. B., Hallberg K. B. (2007). “Techniques for detecting and identifying acidophilic mineral-oxidizing microorganisms,” in Biomining, eds Rawlings D. E., Johnson D. B. (Berlin: Springer-Verlag; ), 237–261. 10.1007/978-3-540-34911-2_12 DOI
Johnson D. B., Hedrich S., Pakostova E. (2017). Indirect redox transformations of iron, copper, and chromium catalyzed by extremely acidophilic bacteria. Front. Microbiol. 8:211. 10.3389/fmicb.2017.00211 PubMed DOI PMC
Kucera J., Bouchal P., Cerna H., Potesil D., Janiczek O., Zdrahal Z., et al. (2012). Kinetics of anaerobic elemental sulfur oxidation by ferric iron in Acidithiobacillus ferrooxidans and protein identification by comparative 2-DE-MS/MS. Antonie Van Leeuwenhoek 101 561–573. 10.1007/s10482-011-9670-2 PubMed DOI
Kucera J., Pakostova E., Lochman J., Janiczek O., Mandl M. (2016a). Are there multiple mechanisms of anaerobic sulfur oxidation with ferric iron in Acidithiobacillus ferrooxidans? Res. Microbiol. 167 357–366. 10.1016/j.resmic.2016.02.004 PubMed DOI
Kucera J., Sedo O., Potesil D., Janiczek O., Zdrahal Z., Mandl M. (2016b). Comparative proteomic analysis of sulfur-oxidizing Acidithiobacillus ferrooxidans CCM 4253 cultures having lost the ability to couple anaerobic elemental sulfur oxidation with ferric iron reduction. Res. Microbiol. 167 587–594. 10.1016/j.resmic.2016.06.009 PubMed DOI
Love M. I., Huber W., Anders S. (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15:550. 10.1186/S13059-014-0550-8 PubMed DOI PMC
Lubitz W., Ogata H., Rüdiger O., Reijerse E. (2014). Hydrogenases. Chem. Rev. 114 4081–4148. 10.1021/cr4005814 PubMed DOI
Mayhew L. E., Ellison E. T., McCollom T. M., Trainor T. P., Templeton A. S. (2013). Hydrogen generation from low-temperature water–rock reactions. Nat. Geosci. 6 478–484. 10.1038/ngeo1825 DOI
McMahon S., Parnell J. (2014). Weighing the deep continental biosphere. FEMS Microbiol. Ecol. 87 113–120. 10.1111/1574-6941.12196 PubMed DOI
Mo H., Chen Q., Du J., Tang L., Qin F., Miao B., et al. (2011). Ferric reductase activity of the ArsH protein from Acidithiobacillus ferrooxidans. J. Microbiol. Biotechnol. 21 464–469. 10.4014/jmb.1101.01020 PubMed DOI
Mohammadi S. S., Schmitz R. A., Pol A., Berben T., Jetten M. S. M., Op den Camp H. J. M. (2019). The acidophilic methanotroph Methylacidimicrobium tartarophylax 4AC grows as autotroph on H2 under microoxic conditions. Front. Microbiol. 10:2352. 10.3389/fmicb.2019.02352 PubMed DOI PMC
Morgan M., Anders S., Lawrence M., Aboyoun P., Pages H., Gentleman R. (2009). ShortRead: a bioconductor package for input, quality assessment and exploration of high-throughput sequence data. Bioinformatics 25 2607–2608. 10.1093/bioinformatics/btp450 PubMed DOI PMC
Norris P. R., Falagán C., Moya-Beltrán A., Castro M., Quatrini R., Johnson D. B. (2020). Acidithiobacillus ferrianus sp. nov.: an ancestral extremely acidophilic and facultatively anaerobic chemolithoautotroph. Extremophiles 24 329–337. 10.1007/s00792-020-01157-1 PubMed DOI PMC
Norris P. R., Laigle L., Slade S. (2018). Cytochromes in anaerobic growth of Acidithiobacillus ferrooxidans. Microbiology 164 383–394. 10.1099/mic.0.000616 PubMed DOI
Nouailler M., Bruscella P., Lojou E., Lebrun R., Bonnefoy V., Guerlesquin F. (2006). Structural analysis of the HiPIP from the acidophilic bacteria: Acidithiobacillus ferrooxidans. Extremophiles 10 191–198. 10.1007/s00792-005-0486-8 PubMed DOI
Ohmura N., Sasaki K., Matsumoto N., Saiki H. (2002). Anaerobic respiration using Fe3+, S0, and H2 in the chemolithoautotrophic bacterium Acidithiobacillus ferrooxidans. J. Bacteriol. 184 2081–2087. 10.1128/JB.184.8.2081 PubMed DOI PMC
Osorio H., Mangold S., Denis Y., Ñancucheo I., Esparza M., Johnson D. B., et al. (2013). Anaerobic sulfur metabolism coupled to dissimilatory iron reduction in the extremophile Acidithiobacillus ferrooxidans. Appl. Environ. Microbiol. 79 2172–2181. 10.1128/AEM.03057-12 PubMed DOI PMC
Pronk J. T., Meijer W. M., Hazeu W., Van Dijken J. P., Bos P., Kuenen J. G. (1991). Growth of Thiobacillus ferrooxidans on formic acid. Appl. Environ. Microbiol. 57 2057–2062. 10.1128/aem.57.7.2057-2062.1991 PubMed DOI PMC
Puente-Sánchez F., Arce-Rodríguez A., Oggerin M., García-Villadangos M., Moreno-Paz M., Blanco Y., et al. (2018). Viable cyanobacteria in the deep continental subsurface. Proc. Natl. Acad. Sci. U. S. A. 115 10702. 10.1073/PNAS.1808176115 PubMed DOI PMC
Puente-Sánchez F., Moreno-Paz M., Rivas L. A., Cruz-Gil P., García-Villadangos M., Gómez M. J., et al. (2014). Deep subsurface sulfate reduction and methanogenesis in the iberian pyrite belt revealed through geochemistry and molecular biomarkers. Geobiology 12 34–47. 10.1111/gbi.12065 PubMed DOI
Quatrini R., Appia-Ayme C., Denis Y., Jedlicki E., Holmes D. S., Bonnefoy V. (2009). Extending the models for iron and sulfur oxidation in the extreme acidophile Acidithiobacillus ferrooxidans. BMC Genomics 10:394. 10.1186/1471-2164-10-394 PubMed DOI PMC
Roger M., Castelle C., Guiral M., Infossi P., Lojou E., Giudici-Orticoni M.-T., et al. (2012). Mineral respiration under extreme acidic conditions: from a supramolecular organization to a molecular adaptation in Acidithiobacillus ferrooxidans. Biochem. Soc. Trans. 40 1324–1329. 10.1042/BST20120141 PubMed DOI
Schmitz R. A., Pol A., Mohammadi S. S., Hogendoorn C., van Gelder A. H., Jetten M. S. M., et al. (2020). The thermoacidophilic methanotroph Methylacidiphilum fumariolicum SolV oxidizes subatmospheric H2 with a high-affinity, membrane-associated [NiFe] hydrogenase. ISME J. 14 1223–1232. 10.1038/s41396-020-0609-3 PubMed DOI PMC
Schröder O., Bleijlevens B., de Jongh T. E., Chen Z., Li T., Fischer J., et al. (2007). Characterization of a cyanobacterial-like uptake [NiFe] hydrogenase: EPR and FTIR spectroscopic studies of the enzyme from Acidithiobacillus ferrooxidans. J. Biol. Inorg. Chem. 12 212–233. 10.1007/s00775-006-0185-7 PubMed DOI
Søndergaard D., Pedersen C. N. S., Greening C. (2016). HydDB: a web tool for hydrogenase classification and analysis. Sci. Rep. 6 1–8. 10.1038/srep34212 PubMed DOI PMC
Stejskal K., Potěšil D., Zdráhal Z. (2013). Suppression of peptide sample losses in autosampler vials. J. Proteome Res. 12 3057–3062. 10.1021/pr400183v PubMed DOI
Stevens T. (1997). Lithoautotrophy in the subsurface. FEMS Microbiol. Rev. 20 327–337. 10.1111/j.1574-6976.1997.tb00318.x DOI
Stookey L. L. (1970). Ferrozine—a new spectrophotometric reagent for iron. Anal. Chem. 42 779–781. 10.1021/ac60289a016 DOI
Sugio T., Taha T. M., Takeuchi F. (2009). Ferrous iron production mediated by tetrathionate hydrolase in tetrathionate-, sulfur-, and iron-grown Acidithiobacillus ferrooxidans ATCC 23270 Cells. Biosci. Biotechnol. Biochem. 73 1381–1386. 10.1271/bbb.90036 PubMed DOI
ten Brink F., Schoepp-Cothenet B., van Lis R., Nitschke W., Baymann F. (2013). Multiple Rieske/cytb complexes in a single organism. Biochim. Biophys. Acta Bioenerg 1827 1392–1406. 10.1016/j.bbabio.2013.03.003 PubMed DOI
Teng Y., Xu Y., Wang X., Christie P. (2019). Function of biohydrogen metabolism and related microbial communities in environmental bioremediation. Front. Microbiol. 10:106. 10.3389/fmicb.2019.00106 PubMed DOI PMC
Valdés J., Pedroso I., Quatrini R., Dodson R. J., Tettelin H., Blake R., et al. (2008). Acidithiobacillus ferrooxidans metabolism: from genome sequence to industrial applications. BMC Genomics 9:597. 10.1186/1471-2164-9-597 PubMed DOI PMC
Vignais P. M., Billoud B. (2007). Occurrence, classification, and biological function of hydrogenases: an overview. Chem. Rev. 107 4206–4272. 10.1021/cr050196r PubMed DOI