Ordered expression of virulence genes in Salmonella enterica serovar typhimurium
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
17575908
DOI
10.1007/bf02932148
Knihovny.cz E-zdroje
- MeSH
- bakteriální geny genetika MeSH
- bakteriální proteiny metabolismus MeSH
- časové faktory MeSH
- glukosa MeSH
- kultivační média MeSH
- promotorové oblasti (genetika) genetika MeSH
- regulace genové exprese u bakterií * MeSH
- Salmonella typhimurium genetika růst a vývoj patogenita MeSH
- salmonelóza mikrobiologie MeSH
- trans-aktivátory metabolismus MeSH
- virulence genetika MeSH
- žlučové kyseliny a soli MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- bakteriální proteiny MeSH
- glukosa MeSH
- HilA protein, Salmonella MeSH Prohlížeč
- kultivační média MeSH
- trans-aktivátory MeSH
- žlučové kyseliny a soli MeSH
Using transcriptional promoter fusions, we investigated the expression of selected SPI-1 and SPI-2 genes of Salmonella enterica serovar Typhimurium (S. Typhimurium). Promoters of genes related to the invasion of the epithelial cell (hilA, hilC, hilD, invF, sicA, sopA, sopB and sopE2) were active in Luria-Bertani (LB) medium and LB with butyrate but were suppressed by bile salts and in glucose minimal (M9) medium. Genes related to S. Typhimurium intracellular survival (phoP, ssrA, ssaB, ssaG, sifA, sifB and pipB) were characterized by their expression in stationary phase in LB and M9 medium. Activity of phoP and ssrA promoters indicated that these might be expressed inside the gut. SPI-1 genes were expressed on the transition to stationary phase while SPI-2 genes were expressed in stationary phase. Among SPI-1 genes, those with regulatory functions preceded in expression the effector genes and sop genes were expressed in the order of sopA, sopB and sopE2, showing hierarchy in the expression of S. Typhimurium virulence genes.
Zobrazit více v PubMed
J Bacteriol. 1999 Feb;181(3):998-1004 PubMed
Curr Microbiol. 1997 Dec;35(6):336-42 PubMed
Cell Microbiol. 2005 Jan;7(1):105-13 PubMed
Mol Microbiol. 1998 Oct;30(1):163-74 PubMed
J Food Prot. 2000 May;63(5):573-8 PubMed
EMBO J. 2001 Apr 17;20(8):1850-62 PubMed
Mol Microbiol. 1998 Aug;29(3):883-91 PubMed
Mol Microbiol. 1999 May;32(3):629-42 PubMed
Mol Microbiol. 2000 Jun;36(6):1206-21 PubMed
Biochem J. 2006 Apr 15;395(2):239-47 PubMed
Infect Immun. 1999 Aug;67(8):4099-105 PubMed
Mol Microbiol. 2002 Mar;43(5):1089-103 PubMed
Mol Microbiol. 2005 Jul;57(1):85-96 PubMed
Mol Microbiol. 2003 Jan;47(1):103-18 PubMed
J Bacteriol. 2002 Aug;184(15):4148-60 PubMed
Mol Microbiol. 2003 May;48(4):1131-43 PubMed
Infect Immun. 2003 Jan;71(1):418-27 PubMed
Cell. 2003 Oct 31;115(3):333-42 PubMed
Cell Microbiol. 2000 Aug;2(4):293-303 PubMed
J Bacteriol. 1999 May;181(10):3096-104 PubMed
EMBO J. 2000 Jul 3;19(13):3235-49 PubMed
FEMS Microbiol Rev. 2005 Nov;29(5):1021-40 PubMed
J Bacteriol. 1995 Dec;177(24):7078-85 PubMed
J Bacteriol. 2005 May;187(10):3565-71 PubMed
Science. 2001 Jun 15;292(5524):2080-3 PubMed
Mol Microbiol. 1996 Nov;22(4):703-14 PubMed
J Bacteriol. 2000 Apr;182(8):2262-8 PubMed
Nat Genet. 2004 May;36(5):486-91 PubMed
J Bacteriol. 1993 Jul;175(14):4475-84 PubMed
J Bacteriol. 1999 Aug;181(16):4949-54 PubMed
EMBO J. 1999 Jul 15;18(14):3924-33 PubMed
Proc Natl Acad Sci U S A. 1996 Mar 19;93(6):2593-7 PubMed
Appl Environ Microbiol. 2004 Jun;70(6):3582-7 PubMed
Proc Natl Acad Sci U S A. 1998 Nov 24;95(24):14057-9 PubMed
Mol Microbiol. 1998 Oct;30(1):175-88 PubMed
PLoS Pathog. 2005 Nov;1(3):e32 PubMed
Mol Microbiol. 2000 Feb;35(4):949-60 PubMed
Cell Microbiol. 2004 Apr;6(4):303-17 PubMed
Mol Microbiol. 2003 Sep;49(6):1565-76 PubMed
Infect Immun. 1998 Jul;66(7):3365-71 PubMed
Mol Microbiol. 2000 Jul;37(2):300-15 PubMed
Mol Microbiol. 2001 Jun;40(6):1289-99 PubMed
Infect Immun. 2000 Dec;68(12):6763-9 PubMed
Infect Immun. 2004 Apr;72(4):2002-13 PubMed
Proc Natl Acad Sci U S A. 1989 Jul;86(13):5054-8 PubMed
Epidemiol Infect. 1990 Jun;104(3):413-26 PubMed