Nonfasting triglycerides and risk of myocardial infarction, ischemic heart disease, and death in men and women
Language English Country United States Media print
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
17635890
DOI
10.1001/jama.298.3.299
PII: 298/3/299
Knihovny.cz E-resources
- MeSH
- Adult MeSH
- Hypertriglyceridemia MeSH
- Myocardial Infarction blood epidemiology mortality MeSH
- Myocardial Ischemia blood epidemiology mortality MeSH
- Middle Aged MeSH
- Humans MeSH
- Lipoproteins blood MeSH
- Follow-Up Studies MeSH
- Postprandial Period MeSH
- Proportional Hazards Models MeSH
- Prospective Studies MeSH
- Risk MeSH
- Aged, 80 and over MeSH
- Aged MeSH
- Triglycerides blood MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Aged, 80 and over MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Lipoproteins MeSH
- Triglycerides MeSH
CONTEXT: Elevated nonfasting triglycerides indicate the presence of remnant lipoproteins, which may promote atherosclerosis. OBJECTIVE: To test the hypothesis that very high levels of nonfasting triglycerides predict myocardial infarction (MI), ischemic heart disease (IHD), and death. DESIGN, SETTING, AND PARTICIPANTS: A prospective cohort study of 7587 women and 6394 men from the general population of Copenhagen, Denmark, aged 20 to 93 years, followed up from baseline (1976-1978) until 2004. MAIN OUTCOME MEASURES: Hazard ratios (HRs) for incident MI, IHD, and total death according to baseline nonfasting triglyceride level categories of 1 to 1.99 mmol/L (88.5-176.1 mg/dL), 2 to 2.99 mmol/L (177.0-264.6 mg/dL), 3 to 3.99 mmol/L (265.5-353.0 mg/dL), 4 to 4.99 mmol/L (354.0-441.6 mg/dL), and 5 mmol/L or more (> or =442.5 mg/dL) vs triglyceride levels of less than 1 mmol/L (<88.5 mg/dL). RESULTS: With increasing levels of nonfasting triglycerides, levels of remnant lipoprotein cholesterol increased. During a mean follow-up of 26 years, 1793 participants (691 women and 1102 men) developed MI, 3479 (1567 women and 1912 men) developed IHD, and 7818 (3731 women and 4087 men) died. For MI, among women, the age-adjusted HRs and multifactorially adjusted HRs (aHRs) for each respective category per 1-mmol/L increase in nonfasting triglyceride levels were 2.2 (aHR, 1.7), 4.4 (aHR, 2.5), 3.9 (aHR, 2.1), 5.1 (aHR, 2.4), and 16.8 (aHR, 5.4); for both, P for trend < .001. For MI, among men, the values were 1.6 (aHR, 1.4), 2.3 (aHR, 1.6), 3.6 (aHR, 2.3), 3.3 (aHR, 1.9), and 4.6 (aHR, 2.4); for both, P for trend < .001. For IHD, among women, the values were 1.7 (aHR, 1.4), 2.8 (aHR, 1.8), 3.0 (aHR, 1.8), 2.1 (aHR, 1.2), and 5.9 (aHR, 2.6); for both, P for trend < .001. For IHD, among men, the values were 1.3 (aHR, 1.1), 1.7 (aHR, 1.3), 2.1 (aHR, 1.3), 2.0 (aHR, 1.2), and 2.9 (aHR, 1.5); P for trend < .001 for age-adjusted and P for trend = .03 for multifactorially adjusted. For total death, among women, the values were 1.3 (aHR, 1.3), 1.7 (aHR, 1.6), 2.2 (aHR, 2.2), 2.2 (aHR, 1.9), and 4.3 (aHR, 3.3); for both, P for trend < .001. For total death, among men, the values were 1.3 (aHR, 1.2), 1.4 (aHR, 1.4), 1.7 (aHR, 1.5), 1.8 (aHR, 1.6), and 2.0 (aHR, 1.8); for both, P for trend < .001. CONCLUSION: In this general population cohort, elevated nonfasting triglyceride levels were associated with increased risk of MI, IHD, and death in men and women.
References provided by Crossref.org
Postprandial changes of lipoprotein profile: effect of abdominal obesity