Parallel image reconstruction using B-spline approximation (PROBER)
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu srovnávací studie, časopisecké články, práce podpořená grantem
PubMed
17763349
DOI
10.1002/mrm.21366
Knihovny.cz E-zdroje
- MeSH
- algoritmy MeSH
- artefakty MeSH
- časové faktory MeSH
- diethylentriaminpentaacetát gadolinia MeSH
- dospělí MeSH
- fantomy radiodiagnostické MeSH
- hlava anatomie a histologie MeSH
- hrudník anatomie a histologie MeSH
- kalibrace MeSH
- kontrastní látky MeSH
- lidé MeSH
- magnetická rezonanční tomografie metody MeSH
- počítačová simulace MeSH
- počítačové zpracování obrazu metody statistika a číselné údaje MeSH
- vylepšení obrazu metody MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- srovnávací studie MeSH
- Názvy látek
- diethylentriaminpentaacetát gadolinia MeSH
- kontrastní látky MeSH
A new reconstruction method for parallel MRI called PROBER is proposed. The method PROBER works in an image domain similar to methods based on Sensitivity Encoding (SENSE). However, unlike SENSE, which first estimates the spatial sensitivity maps, PROBER approximates the reconstruction coefficients directly by B-splines. Also, B-spline coefficients are estimated at once in order to minimize the reconstruction error instead of estimating the reconstruction in each pixel independently (as in SENSE). This makes the method robust to noise in reference images. No presmoothing of reference images is necessary. The number of estimated parameters is reduced, which speeds up the estimation process. PROBER was tested on simulated, phantom, and in vivo data. The results are compared with commercial implementations of the algorithms SENSE and GRAPPA (Generalized Autocalibrating Partially Parallel Acquisitions) in terms of elapsed time and reconstruction quality. The experiments showed that PROBER is faster than GRAPPA and SENSE for images wider than 150x150 pixels for comparable reconstruction quality. With more basis functions, PROBER outperforms both SENSE and GRAPPA in reconstruction quality at the cost of slightly increased computational time.
Citace poskytuje Crossref.org