Chernobyl: relationship between the number of missing newborn boys and the level of radiation in the Czech regions
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
18087603
PubMed Central
PMC2137097
DOI
10.1289/ehp.10779
Knihovny.cz E-zdroje
- Klíčová slova
- atomic power station, birth seasonality, ecologic catastrophe, newborn sex ratio, pregnancy outcome, radiation, radioiodine, raining, spontaneous abortion,
- MeSH
- černobylská havárie * MeSH
- gestační stáří MeSH
- hormony štítné žlázy metabolismus MeSH
- lidé MeSH
- novorozenec MeSH
- porodnost * MeSH
- radioaktivní spad MeSH
- roční období MeSH
- samovolný potrat MeSH
- záření * MeSH
- zeměpis MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- novorozenec MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Česká republika MeSH
- Názvy látek
- hormony štítné žlázy MeSH
- radioaktivní spad MeSH
BACKGROUND: The number of newborn boys was higher than that of girls in the Czech Republic each month from 1950 to 2005. The only exception was November 1986, when the number of newborn boys was significantly reduced. This has been explained by a selective negative impact of the Chernobyl accident in April 1986 on male fetuses during the third month of their prenatal development. OBJECTIVES: The first and most radioactive cloud passed over the Czech Republic during 30 April-1 May 1986. Concurrent rainfall multiplied the radioactivity by up to > 10,000-fold in specific regions. We verified a hypothesis that the decrease in the male birth fraction in November 1986 correlated with the level of radiation in eight Czech regions after the Chernobyl disaster. RESULTS: We found a relationship between the level of radiation and the decrease in the number of newborn boys. The number of newborn boys was decreased in the six eastern regions where the radiation was strongly increased due to rain that accompanied the radioactive cloud. In contrast, the number of newborn boys was not reduced in the two western regions where the radioactivity was markedly lower. CONCLUSIONS: A negative impact of radiation on the prenatal population was manifested as a selective loss of newborn boys in November 1986. This loss correlated with level of radioactivity. The 131I probably played the most important role because of its up-take during primary saturation of fetal thyroid by iodine, which accompanies the onset of the gland function in 3-month-old fetuses.
Zobrazit více v PubMed
Auvinen A, Vahteristo M, Arvela H, Suomela M, Rahola T, Hakama M, et al. Chernobyl fallout and outcome of pregnancy in Finland. Environ Health Perspect. 2001;109:179–185. PubMed PMC
Berkovski V, Eckerman KF, Phipps AW, Noske D. Dosimetry of radioiodine for embryo and fetus. Radiat Prot Dosimetry. 2003;105:265–268. PubMed
Berlin L. Iodine-131 and the pregnant patient. Am J Roentgenol. 2001;176:869–871. PubMed
Bishnoi A, Sachmechi I. Thyroid disease during pregnancy. Am Fam Physician. 1996;53:215–220. PubMed
Bobak M, Gjonca A. The seasonality of live birth is strongly influenced by socio-demographic factors. Hum Reprod. 2001;16:1512–1517. PubMed
Bonde JPE, Wilcox A. Ratio of boys to girls at birth. BMJ. 2007;334:486–487. PubMed PMC
Campbell RB. John Graunt, John Arbuthnott, and the human sex ratio. Hum Biol. 2001;73:605–610. PubMed
Clarke RH. Radiological aspects of Chernobyl in western Europe. J Soc Radiol Protection. 1986;6:139–141.
Costa A, Arisio R, Benedetto C, Bertino E, Fabris C, Giraudi G, et al. Thyroid hormones in tissues from human embryos and fetuses. J Endocrinol Invest. 1991;14:559–568. PubMed
Czech Statistical Office. Demographic Yearbooks. Prague: Czech Statistical Office; 1955–2006.
Davis DL, Gottlieb MB, Stampnitzky JR. Reduced ratio of male to female birth in several industrial countries: a sentinel health indicator? JAMA. 1998;279:1018–1023. PubMed
Dixon WJ, Massey FJ. Introduction to Statistical Analysis. 3. New York: McGraw-Hill; 1969.
Drozdovitch V, Bouville A, Chobanova N, Filistovic V, Ilus T, Kovacic M, et al. Radiation exposure to the population of Europe following the Chernobyl accident. Radiat Prot Dosimetry. 2007;123:515–528. PubMed
Ericson A, Kallen B. Pregnancy outcome in Sweden after the Chernobyl accident. Environ Res. 1994;67:149–159. PubMed
Fisher DA, Klein AH. Thyroid development and disorders of thyroid function in the newborn. N Engl J Med. 1981;304:702–712. PubMed
Fukuda M, Fukuda K, Shimizu T, Andersen CY, Byskov AG. Parental periconceptional smoking and male: female ratio of newborn infants. Lancet. 2002;359:1407–1408. PubMed
Gavyliuk II, Sozans’kyi OO, Akopian GR, Lozyns’ka MR, Siednieva IA, Glynka PA, et al. Genetic monitoring in connection with the Chernobyl accident [in Ukrainian] Tsitol Genet. 1992;26:15–29. PubMed
Green HG, Gareis FJ, Shepard TH, Kelley VC. Cretinism associated with maternal sodium iodide I 131 therapy during pregnancy. Am J Dis Child. 1971;122:247–249. PubMed
Halnan KE. Radio-iodine treatment of hyperthyroidism—a more liberal policy? Clin Endocrinol Metab. 1985;14:467–489. PubMed
Hibbard BM, Herbert RJ. Foetal radiation dose following administration of radioiodinated albumin. Clin Sci. 1960;19:337–344. PubMed
Irgens LM, Lie RT, Ulstein M, Jensen TS, Skjaerven R, Sivertsen F, et al. Pregnancy outcome in Norway after Chernobyl. Biomed Pharmacother. 1991;45:233–241. PubMed
James WH. Evidence that mammalian sex ratio at birth are partially controlled by parental hormone levels at time of conception. J Theor Biol. 1996;180:271–286. PubMed
James WH. Parental exposure to dioxin and offspring sex ratios [Letter] Environ Health Perspect. 2002;110:A502. PubMed PMC
Karakashian AN, Chusova VN, Kryzhanovskaia MV, Lepeshkina TR, Martynovskaia TI, Glushchenko SS, et al. A retrospective analysis of aborted pregnancy in women engaged in agricultural production in controlled areas of Ukraine [in Russian] Lik Sprava. 1997;4:40–42. PubMed
Krajewski P. Evaluation of equivalent body burden in the thyroid for the people of Poland on results of 131I absorption after the disaster in Czernobyl. Determination of thyroid blockade with potassium iodide. Endokrynol Pol. 1991;42:189–202. PubMed
Kroizman-Sheiner E, Brickner D, Canfi A, Schwarzfuchs D. Blocking of the thyroid against I-131 following a nuclear disaster [in Hebrew] Harefuah. 2005;144:497–501. PubMed
Kunz E, editor. Report on Radiation Situation in CSSR at Chernobyl accident. Prague: Institute of Hygiene and Epidemiology; 1986.
Lukacs GL, Szakall S, Kozma I, Gyory F, Balazs G. Changes in the epidemiological parameters of radiation-induced illnesses in East Hungary 10 years after Chernobyl. Langenbecks Arch Chir Suppl Kongressbd. 1997;114:375–377. PubMed
Murbeth S, Rousarova M, Scherb H, Lengfelder E. Thyroid cancer has increased in the adult populations of countries moderately affected by Chernobyl fallout. Med Sci Monit. 2004;10:300–306. PubMed
Nauman J. Results of studies performed with the MZ-XVII program on a national scale; summary and conclusions. Endokrynol Pol. 1991;42:359–367. PubMed
Nauman J, Wolff J. Iodide prophylaxis in Poland after the Chernobyl reactor accident: benefits and risks. Am J Med. 1993;94:524–532. PubMed
Nicolich MJ, Huebner WW, Schnatter AR. Influence of parental and biological factors on the male birth fraction in the United States: an analysis of birth certificate data from 1964 through 1988. Fert Steril. 2000;73:487–492. PubMed
Ogris E. Exposure to radioactive iodine in pregnancy: significance for mother and child [in German] Acta Med Austriaca. 1997;24:150–153. PubMed
O’Hare NJ, Murphy D, Malone JF. Thyroid dosimetry of adult European populations. Br J Radiol. 1998;71:535–543. PubMed
Peterka M, Peterkova R, Likovsky Z. Chernobyl: prenatal loss of four hundred male fetuses in the Czech Republic. Reprod Toxicol. 2004;18:75–79. PubMed
Pietrzak-Flis Z, Krajewski P, Radwan I, Muramatsu Y. Retrospective evaluation of 131I deposition density and thyroid dose in Poland after the Chernobyl accident. Health Phys. 2003;84:698–708. PubMed
Rosner G, Hotzl H, Winkler R. Effect of dry deposition, washout and resuspension on radionuclide ratios after the Chernobyl accident. Sci Total Environ. 1990;90:1–12. PubMed
Russell KP, Rose H, Starr P. The effects of radioactive iodine on maternal and fetal thyroid function during pregnancy. Surg Gynecol Obstet. 1957;104:560–564. PubMed
Scherb H, Weigelt E, Bruske-Hohlfeld I. Regression analysis of time trends in perinatal mortality in Germany 1980–1993. Environ Health Perspect. 2000;108:159–165. PubMed PMC
Smeesters P, Fruhling J, Van Bladel L, Wambersie A. Nuclear accidents and iodine prophylaxis. Part 1: Risks due to irradiation of the thyroid gland. Rev Med Brux. 1998;19:475–482. PubMed
Sperling K, Pelz J, Wegner RD, Dorries A, Gruters A, Mikkelsen M. Significant increase in trisomy 21 in Berlin nine months after the Chernobyl reactor accident: temporal correlation or causal relation? BMJ. 1994;309:158–162. PubMed PMC
Stepanenko VF, Gavrilin YI, Snykov VP, Shevchuk VE, Goksu HY, Voilleque PG, et al. Elevated exposure rates under inclined birch trees indicate the occurrence of rainfall during radioactive fallout from Chernobyl. Health Phys. 2002;82:240–243. PubMed
Ulstein M, Jensen TS, Irgens LM, Lie RT, Sivertsen E. Outcome of pregnancy in one Norwegian county 3 years prior to and 3 years subsequent to the Chernobyl accident. Acta Obstet Gynecol Scand. 1990;69:277–280. PubMed
Valandro L, Zordan M, Polanska M, Purricelli P, Colombo L. Relevance of lunar periodicity in human spontaneous abortions. Gynecol Obstet Invest. 2004;58:179–182. PubMed
Vartiainen T, Kartovaara L, Tuomisto J. Environmental chemicals and changes in sex ratio: analysis over 250 years in Finland. Environ Health Perspect. 1999;107:813–815. PubMed PMC
Yamazaki JN, Schull WJ. Perinatal loss and neurological abnormalities among children of the atomic bomb. Nagasaki and Hiroshima revisited, 1949 to 1989. JAMA. 1990;264:605–609. PubMed
Zanzonico PB. Radiation dose to patients and relatives incident to 131I therapy. Thyroid. 1997;7:199–204. PubMed
Zanzonico PB, Becker DV. Effects of time of administration and dietary iodine levels on potassium iodide (KI) blockade of thyroid irradiation by 131I from radioactive fallout. Health Phys. 2000;78:660–667. PubMed