Flagellin and outer surface proteins from Borrelia burgdorferi are not glycosylated
Language English Country United States Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
18245287
PubMed Central
PMC2293176
DOI
10.1128/jb.01885-07
PII: JB.01885-07
Knihovny.cz E-resources
- MeSH
- Antigens, Bacterial genetics metabolism MeSH
- Antigens, Surface genetics metabolism MeSH
- Bacterial Vaccines genetics metabolism MeSH
- Borrelia burgdorferi genetics metabolism ultrastructure MeSH
- Electrophoresis, Polyacrylamide Gel MeSH
- Cryoelectron Microscopy MeSH
- Flagellin genetics metabolism MeSH
- Glycosylation MeSH
- Spectrometry, Mass, Electrospray Ionization MeSH
- Lipoproteins genetics metabolism MeSH
- Molecular Sequence Data MeSH
- Bacterial Outer Membrane Proteins genetics metabolism MeSH
- Amino Acid Sequence MeSH
- Sequence Homology, Amino Acid MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Antigens, Bacterial MeSH
- Antigens, Surface MeSH
- Bacterial Vaccines MeSH
- flaA protein, bacteria MeSH Browser
- flaB flagellin MeSH Browser
- Flagellin MeSH
- Lipoproteins MeSH
- OspA protein MeSH Browser
- OspB protein, Borrelia burgdorferi MeSH Browser
- Bacterial Outer Membrane Proteins MeSH
We investigated the presence of glycoproteins in Borrelia burgdorferi. We did not find any evidence for glycosylation of the major outer membrane proteins OspA and OspB or the structural flagellar proteins FlaB and FlaA. We suggest that glycoproteins present on the surface of B. burgdorferi may be tightly bound culture medium glycoproteins.
See more in PubMed
Akin, E., G. L. McHugh, R. A. Flavell, E. Fikrig, and A. C. Steere. 1999. The immunoglobulin G (IgG) antibody response to OspA and OspB correlates with severe and prolonged Lyme arthritis, and the IgG response to P35 correlates with mild and brief arthritis. Infect. Immun. 67173-181. PubMed PMC
Brahamsha, B., and E. P. Greenberg. 1988. Biochemical and cytological analysis of the complex periplasmic flagella from Spirochaeta aurantia. J. Bacteriol. 1704023-4032. PubMed PMC
Brandt, M. E., B. S. Riley, J. D. Radolf, and M. V. Norgard. 1990. Immunogenic integral membrane proteins of Borrelia burgdorferi are lipoproteins. Infect. Immun. 58983-991. PubMed PMC
Brooks, C. S., P. S. Hefty, S. E. Jolliff, and D. R. Akins. 2003. Global analysis of Borrelia burgdorferi genes regulated by mammalian host-specific signals. Infect. Immun. 713371-3383. PubMed PMC
Charon, N. W., and S. F. Goldstein. 2002. Genetics of motility and chemotaxis of a fascinating group of bacteria: the spirochetes. Annu. Rev. Genet. 3647-73. PubMed
Coburn, J., J. R. Fischer, and J. M. Leong. 2005. Solving a sticky problem: new genetic approaches to host cell adhesion by the Lyme disease spirochete. Mol. Microbiol. 571182-1195. PubMed
Coleman, J. L., and J. L. Benach. 1989. Identification and characterization of an endoflagellar antigen of Borrelia burgdorferi. J. Clin. Investig. 84322-330. PubMed PMC
Ge, Y., C. Li, L. Corum, C. A. Slaughter, and N. W. Charon. 1998. Structure and expression of the FlaA periplasmic flagellar protein of Borrelia burgdorferi. J. Bacteriol. 1802418-2425. PubMed PMC
Hulínská, D., P. Volf, and L. Grubhoffer. 1992. Study of Borrelia burgdorferi glycoproteins and surface carbohydrates by lectin conjugates. Zentralbl. Bakteriol. 276473-480. PubMed
Kellenberger, C., T. L. Hendrikson, and B. Imperiali. 1997. Structural and functional analysis of peptidyl oligosaccharyl transferase inhibitors. Biochemistry 3612554-12559. PubMed
Li, Z., F. Dumas, D. Dubreuil, and M. Jacques. 1993. A species-specific periplasmic flagellar protein of Serpulina (Treponema) hyodysenteriae. J. Bacteriol. 1758000-8007. PubMed PMC
Neelekanta, G., X. Li, U. Pal, X. Liu, D. S. Beck, K. DePonte, D. Fish, F. S. Kantor, and E. Fikrig. 2007. Outer surface protein B is critical for Borrelia burgdorferi adherence and survival within Ixodes ticks. PLoS Pathog. 31-11. PubMed PMC
Nita-Lazar, M., M. Wacker, B. Schegg, S. Amber, and M. Aebi. 2005. The N-X-S/T consensus sequence is required but not sufficient for bacterial N-linked protein glycosylation. Glycobiology 15361-367. PubMed
Pal, U., X. Li, T. Wang, R. R. Montgomery, N. Ramamoorthi, A. M. Desilva, F. Bao, X. Yang, M. Pypaert, D. Pradhan, F. S. Kantor, S. Telford, J. F. Anderson, and E. Fikrig. 2004. TROSPA, an Ixodes scapularis receptor for Borrelia burgdorferi. Cell 119457-468. PubMed
Sambri, V., C. Stefanelli, and R. Cevenini. 1992. Detection of glycoproteins in Borrelia burgdorferi. Arch. Microbiol. 157205-208. PubMed
Shoberg, R. J., and D. D. Thomas. 1995. Borrelia burgdorferi vesicle production occurs via a mechanism independent of immunoglobulin M involvement. Infect. Immun. 634857-4861. PubMed PMC
Simon, M. I., S. U. Emerson, J. H. Shaper, P. D. Bernard, and A. N. Glazer. 1977. Classification of Bacillus subtilis flagellins. J. Bacteriol. 130200-204. PubMed PMC
Stoitsová, T. R., L. Grubhoffer, and J. Nebesárová. 2003. Exposed and hidden lectin-binding epitopes at the surface of Borrelia burgdorferi. Folia Microbiol. 48654-658. PubMed
Szymanski, C. M., and B. W. Wren. 2005. Protein glycosylation in bacterial mucosal pathogens. Nat. Rev. Microbiol. 3225-237. PubMed
Vancova, M., J. Nebesarova, and L. Grubhoffer. 2005. Lectin-binding characteristics of a Lyme borreliosis spirochete, Borrelia burgdorferi sensu stricto. Folia Microbiol. (Prague) 50229-238. PubMed
Wyss, C. 1998. Flagellins, but not endoflagellar sheath proteins, of Treponema pallidum and of pathogen-related oral spirochetes are glycosylated. Infect. Immun. 665751-5754. PubMed PMC
A bite so sweet: the glycobiology interface of tick-host-pathogen interactions