Purification, crystallization and preliminary crystallographic study of a recombinant plant aminoaldehyde dehydrogenase from Pisum sativum
Language English Country Great Britain, England Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
18259056
PubMed Central
PMC2374172
DOI
10.1107/s1744309107068522
PII: S1744309107068522
Knihovny.cz E-resources
- MeSH
- Aldehyde Dehydrogenase chemistry isolation & purification metabolism MeSH
- DNA Primers MeSH
- Electrophoresis, Polyacrylamide Gel MeSH
- Pisum sativum enzymology MeSH
- Cloning, Molecular MeSH
- Protein Conformation MeSH
- Crystallization MeSH
- Crystallography, X-Ray MeSH
- Recombinant Proteins chemistry isolation & purification metabolism MeSH
- Base Sequence MeSH
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization MeSH
- Blotting, Western MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Aldehyde Dehydrogenase MeSH
- DNA Primers MeSH
- Recombinant Proteins MeSH
Aminoaldehydes are products of polyamine degradation and are known to be reactive metabolites that are toxic to living cells at high concentrations. These compounds are catabolized by aminoaldehyde dehydrogenases, which are enzymes that contain a nicotinamide adenine dinucleotide coenzyme. Aminoaldehyde dehydrogenase from Pisum sativum was overexpressed in Escherichia coli, purified and crystallized using the hanging-drop method. A complete data set was collected to 2.8 A resolution at 100 K. Crystals belong to the monoclinic space group P2(1), with unit-cell parameters a = 86.4, b = 216.6, c = 205.4 A, beta = 98.1 degrees. Molecular replacement was performed and led to the identification of six dimers per asymmetric unit.
See more in PubMed
Agostinelli, E., Arancia, G., Dalla Vedova, L., Belli, F., Marra, M., Salvi, M. & Toninello, A. (2004). Amino Acids, 27, 347–358. PubMed
Brauner, F., Šebela, M., Snégaroff, J., Peč, P. & Meunier, J. C. (2003). Plant Physiol. Biochem.41, 1–10.
Collaborative Computational Project, Number 4 (1994). Acta Cryst. D50, 760–763. PubMed
Kelley, L. A., MacCallum, R. M. & Sternberg, M. J. E. (2000). J. Mol. Biol.299, 499–520. PubMed
Leslie, A. G. W. (1992). Jnt CCP4/ESF–EACBM Newsl. Protein Crystallogr.26
Li, W., Yuan, X. M., Ivanova, S., Tracey, K. J., Eaton, J. W. & Brunk, U. T. (2003). Biochem. J.371, 429–436. PubMed PMC
Matsuda, H. & Suzuki, Y. (1984). Plant Physiol.76, 654–657. PubMed PMC
Matthews, B. W. (1968). J. Mol. Biol.33, 491–497. PubMed
Prieto, M. I., Martin, J., Balaña-Fouce, R. & Garrido-Pertierra, A. (1987). Biochimie, 69, 1161–1168. PubMed
Reumann, S., Ma, C., Lemke, S. & Babujee, L. (2005). Plant Physiol.136, 2587–2608. PubMed PMC
Šebela, M., Brauner, F., Radová, A., Jacobsen, S., Havliš, J., Galuszka, P. & Peč, P. (2000). Biochim. Biophys. Acta, 1480, 329–341. PubMed
Šebela, M., Luhová, L., Brauner, F., Galuszka, P., Radová, A. & Peč, P. (2001). Plant Physiol. Biochem.39, 831–839.
Šebela, M., Štosová, T., Havliš, J., Wielsch, N., Thomas, H., Zdráhal, Z. & Shevchenko, A. (2006). Proteomics, 6, 2959–2963. PubMed
Storoni, L. C., McCoy, A. J. & Read, R. J. (2004). Acta Cryst. D60, 432–438. PubMed