Plant ALDH10 family: identifying critical residues for substrate specificity and trapping a thiohemiacetal intermediate

. 2013 Mar 29 ; 288 (13) : 9491-507. [epub] 20130213

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid23408433
Odkazy

PubMed 23408433
PubMed Central PMC3611018
DOI 10.1074/jbc.m112.443952
PII: S0021-9258(19)35106-3
Knihovny.cz E-zdroje

Plant ALDH10 family members are aminoaldehyde dehydrogenases (AMADHs), which oxidize ω-aminoaldehydes to the corresponding acids. They have been linked to polyamine catabolism, osmoprotection, secondary metabolism (fragrance), and carnitine biosynthesis. Plants commonly contain two AMADH isoenzymes. We previously studied the substrate specificity of two AMADH isoforms from peas (PsAMADHs). Here, two isoenzymes from tomato (Solanum lycopersicum), SlAMADHs, and three AMADHs from maize (Zea mays), ZmAMADHs, were kinetically investigated to obtain further clues to the catalytic mechanism and the substrate specificity. We also solved the high resolution crystal structures of SlAMADH1 and ZmAMADH1a because these enzymes stand out from the others regarding their activity. From the structural and kinetic analysis, we can state that five residues at positions 163, 288, 289, 444, and 454 (PsAMADHs numbering) can, directly or not, significantly modulate AMADH substrate specificity. In the SlAMADH1 structure, a PEG aldehyde derived from the precipitant forms a thiohemiacetal intermediate, never observed so far. Its absence in the SlAMADH1-E260A structure suggests that Glu-260 can activate the catalytic cysteine as a nucleophile. We show that the five AMADHs studied here are capable of oxidizing 3-dimethylsulfoniopropionaldehyde to the cryo- and osmoprotectant 3-dimethylsulfoniopropionate. For the first time, we also show that 3-acetamidopropionaldehyde, the third aminoaldehyde besides 3-aminopropionaldehyde and 4-aminobutyraldehyde, is generally oxidized by AMADHs, meaning that these enzymes are unique in metabolizing and detoxifying aldehyde products of polyamine degradation to nontoxic amino acids. Finally, gene expression profiles in maize indicate that AMADHs might be important for controlling ω-aminoaldehyde levels during early stages of the seed development.

Zobrazit více v PubMed

Bouchereau A., Aziz A., Larher F., Martin-Tanguy J. (1999) Polyamines and environmental challenges. Recent development. Plant Sci. 140, 103–125

Šebela M., Frébort I., Petı̌valský M., Peč P. (2002) Copper/topa quinone-containing amine oxidases. Recent research developments. in Studies in Natural Products Chemistry, Vol. 26, Bioactive Natural Products, Part G (Atta-ur-Rahman, ed) pp. 1259–1299, Elsevier, Amsterdam

Li W., Yuan X. M., Ivanova S., Tracey K. J., Eaton J. W., Brunk U. T. (2003) 3-Aminopropanal, formed during cerebral ischaemia, is a potent lysosomotropic neurotoxin. Biochem. J. 371, 429–436 PubMed PMC

Tylichová M., Kopečný D., Moréra S., Briozzo P., Lenobel R., Snégaroff J., Šebela M. (2010) Structural and functional characterization of plant aminoaldehyde dehydrogenase from Pisum sativum with a broad specificity for natural and synthetic aminoaldehydes. J. Mol. Biol. 396, 870–882 PubMed

Bouché N., Fromm H. (2004) GABA in plants. Just a metabolite? Trends Plant Sci. 9, 110–115 PubMed

Bradbury L. M., Gillies S. A., Brushett D. J., Waters D. L., Henry R. J. (2008) Inactivation of an aminoaldehyde dehydrogenase is responsible for fragrance in rice. Plant Mol. Biol. 68, 439–449 PubMed

Arikit S., Yoshihashi T., Wanchana S., Uyen T. T., Huong N. T., Wongpornchai S., Vanavichit A. (2011) Deficiency in the amino aldehyde dehydrogenase encoded by GmAMADH2, the homologue of rice Os2AP, enhances 2-acetyl-1-pyrroline biosynthesis in soybeans (Glycine max L.). Plant Biotechnol. J. 9, 75–87 PubMed

Rhodes D., Hanson A. D. (1993) Quaternary ammonium and tertiary sulfonium compounds in higher plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 44, 357–384

James F., Paquet L., Sparace S. A., Gage D. A., Hanson A. D. (1995) Evidence implicating dimethylsulfoniopropionaldehyde as an intermediate in dimethylsulfoniopropionate biosynthesis. Plant Physiol. 108, 1439–1448 PubMed PMC

Trossat C., Rathinasabapathi B., Hanson A. D. (1997) Transgenically expressed betaine aldehyde dehydrogenase efficiently catalyzes oxidation of dimethylsulfoniopropionaldehyde and ω-aminoaldehydes. Plant Physiol. 113, 1457–1461 PubMed PMC

Kirch H. H., Bartels D., Wei Y., Schnable P. S., Wood A. J. (2004) The ALDH gene superfamily of Arabidopsis. Trends Plant Sci. 9, 371–377 PubMed

Sophos N. A., Vasiliou V. (2003) Aldehyde dehydrogenase gene superfamily. The 2002 update. Chem. Biol. Interact. 143, 5–22 PubMed

Nakamura T., Yokota S., Muramoto Y., Tsutsui K., Oguri Y., Fukui K., Takabe T. (1997) Expression of a betaine aldehyde dehydrogenase gene in rice, a glycinebetaine nonaccumulator, and possible localization of its protein in peroxisomes. Plant J. 11, 1115–1120 PubMed

Reumann S., Babujee L., Ma C., Wienkoop S., Siemsen T., Antonicelli G. E., Rasche N., Lüder F., Weckwerth W., Jahn O. (2007) Proteome analysis of Arabidopsis leaf peroxisomes reveals novel targeting peptides, metabolic pathways, and defense mechanisms. Plant Cell 19, 3170–3193 PubMed PMC

Perez-Miller S. J., Hurley T. D. (2003) Coenzyme isomerization is integral to catalysis in aldehyde dehydrogenase. Biochemistry 42, 7100–7109 PubMed

Wymore T., Hempel J., Cho S. S., Mackerell A. D., Jr., Nicholas H. B., Jr., Deerfield D. W., 2nd (2004) Molecular recognition of aldehydes by aldehyde dehydrogenase and mechanism of nucleophile activation. Proteins 57, 758–771 PubMed

Kopečný D., Tylichová M., Snegaroff J., Popelková H., Šebela M. (2011) Carboxylate and aromatic active-site residues are determinants of high-affinity binding of ω-aminoaldehydes to plant aminoaldehyde dehydrogenases. FEBS J. 278, 3130–3139 PubMed

Fujiwara T., Hori K., Ozaki K., Yokota Y., Mitsuya S., Ichiyanagi T., Hattori T., Takabe T. (2008) Enzymatic characterization of peroxisomal and cytosolic betaine aldehyde dehydrogenases in barley. Physiol. Plant 134, 22–30 PubMed

Brocker C., Vasiliou M., Carpenter S., Carpenter C., Zhang Y., Wang X., Kotchoni S. O., Wood A. J., Kirch H. H., Kopečný D., Nebert D. W, Vasiliou V. (2013) Aldehyde dehydrogenase (ALDH) superfamily in plants. Gene nomenclature and comparative genomics. Planta 237, 189–210 PubMed PMC

Tylichová M., Briozzo P., Kopečný D., Ferrero J., Moréra S., Joly N., Snégaroff J., Šebela M. (2008) Purification, crystallization and preliminary crystallographic study of a recombinant plant aminoaldehyde dehydrogenase from Pisum sativum. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 64, 88–90 PubMed PMC

Šebela M., Štosová T., Havlis J., Wielsch N., Thomas H., Zdráhal Z., Shevchenko A. (2006) Thermostable trypsin conjugates for high-throughput proteomics. Synthesis and performance evaluation. Proteomics 6, 2959–2963 PubMed

Sebela M., Brauner F., Radová A., Jacobsen S., Havlis J., Galuszka P., Pec P. (2000) Characterisation of a homogeneous plant aminoaldehyde dehydrogenase. Biochim. Biophys. Acta. 1480, 329–341 PubMed

Vaz F. M., Fouchier S. W., Ofman R., Sommer M., Wanders R. J. (2000) Molecular and biochemical characterization of rat γ-trimethylaminobutyraldehyde dehydrogenase and evidence for the involvement of human aldehyde dehydrogenase 9 in carnitine biosynthesis. J. Biol. Chem. 275, 7390–7394 PubMed

Wood P. L., Khan M. A., Moskal J. R. (2007) The concept of “aldehyde load” in neurodegenerative mechanisms. Cytotoxicity of the polyamine degradation products hydrogen peroxide, acrolein, 3-aminopropanal, 3-acetamidopropanal and 4-aminobutanal in a retinal ganglion cell line. Brain Res. 1145, 150–156 PubMed

Holt A., Degenhardt O. S., Berry P. D., Kapty J. S., Mithani S., Smith D. J., Di Paolo M. L. (2007) The effects of buffer cations on interactions between mammalian copper-containing amine oxidases and their substrates. J. Neural Transm. 114, 733–741 PubMed

Kabsch W. (2010) XDS. Acta Crystallogr. D Biol. Crystallogr. 66, 125–132 PubMed PMC

McCoy A. J., Grosse-Kunstleve R. W., Adams P. D., Winn M. D., Storoni L. C., Read R. J. (2007) Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 PubMed PMC

Blanc E., Roversi P., Vonrhein C., Flensburg C., Lea S. M., Bricogne G. (2004) Refinement of severely incomplete structures with maximum likelihood in BUSTER-TNT. Acta Crystallogr. D Biol. Crystallogr. 60, 2210–2221 PubMed

Emsley P., Cowtan K. (2004) Coot. Model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 PubMed

Edgar R. C. (2004) MUSCLE. Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 PubMed PMC

Guindon S., Gascuel O. (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst. Biol. 52, 696–704 PubMed

Zheng H., Chruszcz M., Lasota P., Lebioda L., Minor W. (2008) Data mining of metal ion environments present in protein structures. J. Inorg. Biochem. 102, 1765–1776 PubMed PMC

Lamb A. L., Newcomer M. E. (1999) The structure of retinal dehydrogenase type II at 2.7 Å resolution. Implications for retinal specificity. Biochemistry 38, 6003–6011 PubMed

González-Segura L., Rudiño-Piñera E., Muñoz-Clares R. A., Horjales E. (2009) The crystal structure of a ternary complex of betaine aldehyde dehydrogenase from Pseudomonas aeruginosa provides new insight into the reaction mechanism and shows a novel binding mode of the 2′-phosphate of NADP+ and a novel cation binding site. J. Mol. Biol. 385, 542–557 PubMed

Izaguirre G., Pietruszko R., Cho S., MacKerell A., Jr. (2001) Human aldehyde dehydrogenase catalytic activity and structural interactions with coenzyme analogs. J. Biomol. Struct. Dyn. 19, 429–447 PubMed

Hill E. J., Chou T. H., Shih M. C., Park J. H. (1975) Covalent binding of 3-pyridinealdehyde nicotinamide adenine dinucleotide and substrate to glyceraldehyde 3-phosphate dehydrogenase. J. Biol. Chem. 250, 1734–1740 PubMed

Steinmetz C. G., Xie P., Weiner H., Hurley T. D. (1997) Structure of mitochondrial aldehyde dehydrogenase. The genetic component of ethanol aversion. Structure 5, 701–711 PubMed

D'Ambrosio K., Pailot A., Talfournier F., Didierjean C., Benedetti E., Aubry A., Branlant G., Corbier C. (2006) The first crystal structure of a thioacylenzyme intermediate in the ALDH family. New coenzyme conformation and relevance to catalysis. Biochemistry 45, 2978–2986 PubMed

Brauner F., Šebela M., Snégaroff J., Peč P., Meunier J. C. (2003) Pea seedling aminoaldehyde dehydrogenase. Primary structure and active site residues. Plant Physiol. Biochem. 41, 1–10

Wang X., Weiner H. (1995) Involvement of glutamate 268 in the active site of human liver mitochondrial (class 2) aldehyde dehydrogenase as probed by site-directed mutagenesis. Biochemistry 34, 237–243 PubMed

Mann C. J., Weiner H. (1999) Differences in the roles of conserved glutamic acid residues in the active site of human class 3 and class 2 aldehyde dehydrogenases. Protein Sci. 8, 1922–1929 PubMed PMC

Brouquisse R., Weigel P., Rhodes D., Yocum C. F., Hanson A. D. (1989) Evidence for a ferredoxin-dependent choline monooxygenase from spinach chloroplast stroma. Plant Physiol. 90, 322–329 PubMed PMC

Ishitani M., Arakawa K., Mizuno K., Kishitani S., Takabe T. (1993) Betaine aldehyde dehydrogenase in the Gramineae. Levels in leaves of both betaine-accumulating and non-accumulating cereal plants. Plant Cell Physiol. 34, 493–495

Brunk D. G., Rich P. J., Rhodes D. (1989) Genotypic variation for glycinebetaine among public inbreds of maize. Plant Physiol. 91, 1122–1125 PubMed PMC

Lerma C., Rich P. J., Ju G. C., Yang W.-J., Hanson A. D., Rhodes D. (1991) Betaine deficiency in maize. Complementation tests and metabolic basis. Plant Physiol. 95, 1113–1119 PubMed PMC

Mäkelä P., Jokinen K., Kontturi M., Peltonen-Sainio P., Pheu E., Somersalo S. (1998) Foliar application of glycinebetaine, a novel product from sugar beet, as an approach to increase tomato yield. Ind. Crop. Prod. 7, 139–148

Charlton A. J., Donarski J. A., Harrison M., Jones S. A., Godward J., Oehlschlager S., Arques J. L., Ambrose M., Chinoy C., Mullineaux P. M., Domoney C. (2008) Responses of the pea (Pisum sativum L.) leaf metabolome to drought stress assessed by nuclear magnetic resonance spectroscopy. Metabolomics 4, 312–327

Díaz-Sánchez Á. G., González-Segura L., Mújica-Jiménez C., Rudiño-Piñera E., Montiel C., Martínez-Castilla L. P., Muñoz-Clares R. A. (2012) Amino acid residues critical for the specificity for betaine aldehyde of the plant ALDH10 isoenzyme involved in the synthesis of glycine betaine. Plant Physiol. 158, 1570–1582 PubMed PMC

Weigel P., Weretilnyk E. A., Hanson A. D. (1986) Betaine aldehyde oxidation by spinach chloroplasts. Plant Physiol. 82, 753–759 PubMed PMC

Hibino T., Meng Y. L., Kawamitsu Y., Uehara N., Matsuda N., Tanaka Y., Ishikawa H., Baba S., Takabe T., Wada K., Ishii T., Takabe T. (2001) Molecular cloning and functional characterization of two kinds of betaine-aldehyde dehydrogenase in betaine-accumulating mangrove Avicennia marina (Forsk.) Vierh. Plant Mol. Biol. 45, 353–363 PubMed

Valenzuela-Soto E. M., Muñoz-Clares R. A. (1994) Purification and properties of betaine aldehyde dehydrogenase extracted from detached leaves of Amaranthus hypochondriacus L. subjected to water deficit. J. Plant Physiol. 143, 145–152

Rippa S., Zhao Y., Merlier F., Charrier A., Perrin Y. (2012) The carnitine biosynthetic pathway in Arabidopsis thaliana shares similar features with the pathway of mammals and fungi. Plant Physiol. Biochem. 60, 109–114 PubMed

Marchitti S. A., Brocker C., Stagos D., Vasiliou V. (2008) Non-P450 aldehyde oxidizing enzymes: the aldehyde dehydrogenase superfamily. Expert Opin. Drug Metab. Toxicol. 4, 697–720 PubMed PMC

Johansson K., El-Ahmad M., Ramaswamy S., Hjelmqvist L., Jörnvall H., Eklund H. (1998) Structure of betaine aldehyde dehydrogenase at 2.1 Å resolution. Protein Sci. 7, 2106–2117 PubMed PMC

Hjelmqvist L., Norin A., El-Ahmad M., Griffiths W., Jörnvall H. (2003) Distinct but parallel evolutionary patterns between alcohol and aldehyde dehydrogenases. Addition of fish/human betaine aldehyde dehydrogenase divergence. Cell Mol. Life Sci. 60, 2009–2016 PubMed

Tavladoraki P., Rossi M. N., Saccuti G., Perez-Amador M. A., Polticelli F., Angelini R., Federico R. (2006) Heterologous expression and biochemical characterization of a polyamine oxidase from Arabidopsis involved in polyamine back conversion. Plant Physiol. 141, 1519–1532 PubMed PMC

Takahashi Y., Cong R., Sagor G. H., Niitsu M., Berberich T., Kusano T. (2010) Characterization of five polyamine oxidase isoforms in Arabidopsis thaliana. Plant Cell Rep. 29, 955–965 PubMed

Raman S. B., Rathinasabapathi B. (2003) β-Alanine N-methyltransferase of Limonium latifolium. cDNA cloning and functional expression of a novel N-methyltransferase implicated in the synthesis of the osmoprotectant β-alanine betaine. Plant Physiol. 132, 1642–1651 PubMed PMC

Moschou P. N., Sanmartin M., Andriopoulou A. H., Rojo E., Sanchez-Serrano J. J., Roubelakis-Angelakis K. A. (2008) Bridging the gap between plant and mammalian polyamine catabolism. A novel peroxisomal polyamine oxidase responsible for a full back-conversion pathway in Arabidopsis. Plant Physiol. 147, 1845–1857 PubMed PMC

Kamada-Nobusada T., Hayashi M., Fukazawa M., Sakakibara H., Nishimura M. (2008) A putative peroxisomal polyamine oxidase, AtPAO4, is involved in polyamine catabolism in Arabidopsis thaliana. Plant Cell Physiol. 49, 1272–1282 PubMed

Paquet L., Rathinasabapathi B., Saini H., Zamir L., Gage D. A., Huang Z.-H., Hanson A. D. (1994) Accumulation of the compatible solute 3-dimethylsulfoniopropionate in sugarcane and its relatives, but not other gramineous crops. Aust. J. Plant Physiol. 21, 37–48

Rastogi R., Davies P. J. (1990) Polyamine metabolism in ripening tomato fruit. I. Identification of metabolites of putrescine and spermidine. Plant Physiol. 94, 1449–1455 PubMed PMC

Chen S., Yang Y., Shi W., Ji Q., He F., Zhang Z., Cheng Z., Liu X., Xu M. (2008) Badh2, encoding betaine aldehyde dehydrogenase, inhibits the biosynthesis of 2-acetyl-1-pyrroline, a major component in rice fragrance. Plant Cell 20, 1850–1861 PubMed PMC

Niu X., Tang W., Huang W., Ren G., Wang Q., Luo D., Xiao Y., Yang S., Wang F., Lu B. R., Gao F., Lu T., Liu Y. (2008) RNAi-directed down regulation of OsBADH2 results in aroma (2-acetyl-1-pyrroline) production in rice (Oryza sativa L.). BMC Plant Biol. 8, 100. PubMed PMC

Nakamura T., Nomura M., Mori H., Jagendorf A. T., Ueda A., Takabe T. (2001) An isozyme of betaine aldehyde dehydrogenase in barley. Plant Cell Physiol. 42, 1088–1092 PubMed

Missihoun T. D., Schmitz J., Klug R., Kirch H. H., Bartels D. (2011) Betaine aldehyde dehydrogenase genes from Arabidopsis with different sub-cellular localization affect stress responses. Planta 233, 369–382 PubMed

Charrier A., Rippa S., Yu A., Nguyen P. J., Renou J. P., Perrin Y. (2012) The effect of carnitine on Arabidopsis development and recovery in salt stress conditions. Planta 235, 123–135 PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace