Polyamine-Derived Aminoaldehydes and Acrolein: Cytotoxicity, Reactivity and Analysis of the Induced Protein Modifications

. 2023 Nov 04 ; 28 (21) : . [epub] 20231104

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid37959847

Grantová podpora
IGA_PrF_2023_022 Palacký University, Olomouc

Polyamines participate in the processes of cell growth and development. The degradation branch of their metabolism involves amine oxidases. The oxidation of spermine, spermidine and putrescine releases hydrogen peroxide and the corresponding aminoaldehyde. Polyamine-derived aminoaldehydes have been found to be cytotoxic, and they represent the subject of this review. 3-aminopropanal disrupts the lysosomal membrane and triggers apoptosis or necrosis in the damaged cells. It is implicated in the pathogenesis of cerebral ischemia. Furthermore, 3-aminopropanal yields acrolein through the elimination of ammonia. This reactive aldehyde is also generated by the decomposition of aminoaldehydes produced in the reaction of serum amine oxidase with spermidine or spermine. In addition, acrolein is a common environmental pollutant. It causes covalent modifications of proteins, including carbonylation, the production of Michael-type adducts and cross-linking, and it has been associated with inflammation-related diseases. APAL and acrolein are detoxified by aldehyde dehydrogenases and other mechanisms. High-performance liquid chromatography, immunochemistry and mass spectrometry have been largely used to analyze the presence of polyamine-derived aminoaldehydes and protein modifications elicited by their effect. However, the main and still open challenge is to find clues for discovering clear linkages between aldehyde-induced modifications of specific proteins and the development of various diseases.

Zobrazit více v PubMed

LoPachin R.M., Gavin T. Molecular mechanisms of aldehyde toxicity: A chemical perspective. Chem. Res. Toxicol. 2014;27:1081–1091. doi: 10.1021/tx5001046. PubMed DOI PMC

Vistoli G., De Maddis D., Cipak A., Zarkovic N., Carini M., Aldini G. Advanced glycoxidation and lipoxidation end products (AGEs and ALEs): An overview of their mechanisms of formation. Free Rad. Res. 2013;47((Suppl. 1)):3–27. doi: 10.3109/10715762.2013.815348. PubMed DOI

Lai S.W.T., Lopez Gonzalez E.J., Zoukari T., Ki P., Shuck S.C. Methylglyoxal and its adducts: Induction, repair, and association with disease. Chem. Res. Toxicol. 2022;35:1720–1746. doi: 10.1021/acs.chemrestox.2c00160. PubMed DOI PMC

Domingues R.M., Domingues P., Melo T., Pérez-Sala D., Reis A., Spickett C.M. Lipoxidation adducts with peptides and proteins: Deleterious modifications or signaling mechanisms? J. Proteom. 2013;92:110–131. doi: 10.1016/j.jprot.2013.06.004. PubMed DOI

Stevens J.F., Maier C.S. Acrolein: Sources, metabolism and biomolecular interactions relevant to human health and disease. Mol. Nutr. Food. Res. 2008;52:7–25. doi: 10.1002/mnfr.200700412. PubMed DOI PMC

Guéraud F., Atalay M., Bresgen N., Cipak A., Eckl P.M., Huc L., Jouanin I., Siems W., Uchida K. Chemistry and biochemistry of lipid peroxidation products. Free Radic. Res. 2010;44:1098–1124. doi: 10.3109/10715762.2010.498477. PubMed DOI

Uchida K., Kanematsu M., Sakai K., Matsuda T., Hattori N., Mizuno Y., Suzuki D., Miyata T., Noguchi N., Niki E., et al. Protein-bound acrolein: Potential markers for oxidative stress. Proc. Natl. Acad. Sci. USA. 1998;95:4882–4887. doi: 10.1073/pnas.95.9.4882. PubMed DOI PMC

Furuhata A., Ishii T., Kumazawa S., Yamada T., Nakayama T., Uchida K. Nε-(3-methylpyridinium)lysine, a major antigenic adduct generated in acrolein-modified protein. J. Biol. Chem. 2003;278:48658–48665. doi: 10.1074/jbc.M309401200. PubMed DOI

Suzuki Y.J., Carini M., Butterfield D.A. Protein carbonylation. Antioxid. Redox Signal. 2010;12:323–325. doi: 10.1089/ars.2009.2887. PubMed DOI PMC

Baron K., Stasolla C. The role of polyamines during in vivo and in vitro development. In Vitro Cell. Dev. Biol.-Plant. 2008;44:384–395. doi: 10.1007/s11627-008-9176-4. DOI

Casero R.A., Jr., Pegg A.E. Polyamine catabolism and disease. Biochem. J. 2009;421:323–338. doi: 10.1042/BJ20090598. PubMed DOI PMC

Chen D., Shao Q., Yin L., Younis A., Zheng B. Polyamine function in plants: Metabolism, regulation on development, and roles in abiotic stress responses. Front. Plant Sci. 2019;9:1945. doi: 10.3389/fpls.2018.01945. PubMed DOI PMC

Sari I.N., Setiawan T., Kim K.S., Wijaya Y.T., Cho K.W., Kwon H.Y. Metabolism and function of polyamines in cancer progression. Cancer Lett. 2021;519:91–104. doi: 10.1016/j.canlet.2021.06.020. PubMed DOI

O’Brien P.J., Siraki A.G., Shangari N. Aldehyde sources, metabolism, molecular toxicity mechanisms, and possible effects on human health. Crit. Rev. Toxicol. 2005;35:609–662. doi: 10.1080/10408440591002183. PubMed DOI

Casero R.A., Jr., Stewart T.M., Pegg A.E. Polyamine metabolism and cancer: Treatments, challenges and opportunities. Nat. Rev. Cancer. 2018;18:681–695. doi: 10.1038/s41568-018-0050-3. PubMed DOI PMC

Pietrangeli P., Federico R., Mondovì B., Morpurgo L. Substrate specificity of copper-containing plant amine oxidases. J. Inorg. Biochem. 2007;101:997–1004. doi: 10.1016/j.jinorgbio.2007.03.014. PubMed DOI

Pietrangeli P., Morpurgo L., Mondovì B., Di Paolo M.L., Rigo A. Soluble copper amine oxidases from mammals. In: Floris G., Mondovì B., editors. Copper Amine Oxidases: Structures, Catalytic Mechanisms and Role in Pathophysiology. CRC Press; Boca Raton, FL, USA: 2009. pp. 51–68.

Tabor C.W., Tabor H., Bachrach U. Identification of the aminoaldehydes produced by the oxidation of spermine and spermidine with purified plasma amine oxidase. J. Biol. Chem. 1964;239:2194–2203. doi: 10.1016/S0021-9258(20)82220-0. PubMed DOI

Kimes B.W., Morris D.R. Preparation and stability of oxidized polyamines. Biochim. Biophys. Acta. 1971;228:223–234. doi: 10.1016/0005-2787(71)90562-4. PubMed DOI

Seiler N., Knödgen B., Haegele K. N-(3-Aminopropyl)pyrrolidin-2-one, a product of spermidine catabolism in vivo. Biochem. J. 1982;208:189–197. doi: 10.1042/bj2080189. PubMed DOI PMC

Houen G., Bock K., Jensen A.L. HPLC and NMR investigation of the serum amine oxidase catalyzed oxidation of polyamines. Acta Chem. Scand. 1994;48:52–60. doi: 10.3891/acta.chem.scand.48-0052. PubMed DOI

Quash G., Taylor D.R. Serum β-aminopropionaldehyde: Identification and origin. Clin. Chim. Acta. 1970;30:17–23. doi: 10.1016/0009-8981(70)90187-7. PubMed DOI

Seiler N. Oxidation of polyamines and brain injury. Neurochem. Res. 2000;25:471–490. doi: 10.1023/A:1007508008731. PubMed DOI

Chae T.U., Kim W.J., Choi S., Park S.J., Lee S.Y. Metabolic engineering of Escherichia coli for the production of 1,3-diaminopropane, a three carbon diamine. Sci. Rep. 2015;5:13040. doi: 10.1038/srep13040. PubMed DOI PMC

Lee Y., Sayre L.M. Reaffirmation that metabolism of polyamines by bovine plasma amine oxidase occurs strictly at the primary amino termini. J. Biol. Chem. 1998;273:19490–19494. doi: 10.1074/jbc.273.31.19490. PubMed DOI

Houen G., Struve C., Søndergaard R., Friis T., Anthoni U., Nielsen P.H., Christophersen C., Petersen B.O., Duus J.Ø. Substrate specificity of the bovine serum amine oxidase and in situ characterization of aminoaldehydes by NMR spectroscopy. Biorg. Med. Chem. 2005;13:3783–3796. doi: 10.1016/j.bmc.2005.03.020. PubMed DOI

Šebela M., Brauner F., Radová A., Jacobsen S., Havliš J., Galuszka P., Peč P. Characterisation of a homogeneous plant aminoaldehyde dehydrogenase. Biochim. Biophys. Acta-Protein Struct. Molec. Enzym. 2000;1480:329–341. doi: 10.1016/S0167-4838(00)00086-8. PubMed DOI

Struve C., Christophersen C. Structural equilibrium and ring-chain tautomerism of aqueous solutions of 4-aminobutyraldehyde. Heterocycles. 2003;60:1907–1914. doi: 10.3987/COM-03-9802. DOI

Šebela M., Radová A., Angelini R., Tavladoraki P., Frébort I., Peč P. FAD-containing polyamine oxidases: A timely challenge for researchers in biochemistry and physiology of plants. Plant Sci. 2001;160:197–207. doi: 10.1016/S0168-9452(00)00380-0. PubMed DOI

Padiglia A., Medda R., Paci M., Sette M., Lorrai A., Floris G. Characterization of a cyclic compound fomed after spermine oxidation by lentil amine oxidase. Biochem. Mol. Biol. Int. 1997;41:407–413. doi: 10.1080/15216549700201421. PubMed DOI

Guo Z., Zhang Q., Zou H., Guo B., Ni J. A method for the analysis of low-mass molecules by maldi-tof mass spectrometry. Anal. Chem. 2002;74:1637–1641. doi: 10.1021/ac010979m. PubMed DOI

Federico R., Ercolini L., Laurenzi M., Angelini R. Oxidation of acetylpolyamines by maize polyamine oxidase. Phytochemistry. 1996;43:339–341. doi: 10.1016/0031-9422(96)00316-0. DOI

Cervelli M., Amendola R., Polticelli F., Mariottini P. Spermine oxidase: Ten years after. Amino Acids. 2012;42:441–450. doi: 10.1007/s00726-011-1014-z. PubMed DOI

Moschou P.N., Sanmartin M., Andriopoulou A.H., Rojo E., Sanchez-Serrano J.J., Roubelakis-Angelakis K.A. Bridging the gap between plant and mammalian polyamine catabolism: A novel peroxisomal polyamine oxidase responsible for a full back-conversion pathway in Arabidopsis. Plant Physiol. 2008;147:1845–1857. doi: 10.1104/pp.108.123802. PubMed DOI PMC

Fincato P., Moschou P.N., Spedaletti V., Tavazza R., Angelini R., Federico R., Roubelakis-Angelakis K.A., Tavladoraki P. Functional diversity inside the Arabidopsis polyamine oxidase gene family. J. Exp. Bot. 2011;62:1155–1168. doi: 10.1093/jxb/erq341. PubMed DOI

Häkkinen M.R., Hyvönen M.T., Auriola S., Casero R.A., Jr., Vepsäläinen J., Khomutov A.R., Alhonen L., Keinänen T.A. Metabolism of N-alkylated spermine analogues by polyamine and spermine oxidases. Amino Acids. 2010;38:369–381. doi: 10.1007/s00726-009-0429-2. PubMed DOI PMC

Moriya S., Iwasaki K., Samejima K., Takao K., Kohda K., Hiramatsu K., Kawakita M. A mass spectrometric method to determine activities of enzymes involved in polyamine catabolism. Anal. Chim. Acta. 2012;748:45–52. doi: 10.1016/j.aca.2012.08.031. PubMed DOI

Morgan D.M.L., Bachrach U., Assaraf Y.G., Harari E., Golenser J. The effect of purified aminoaldehydes produced by polyamine oxidation on the development in vitro of Plasmodium falciparum in normal and glucose-6-phosphate-dehydrogenase-deficient erythrocytes. Biochem. J. 1986;236:97–101. doi: 10.1042/bj2360097. PubMed DOI PMC

Hegre O.D., Marshall S., Hickey G.E. Spermidine cytotoxicity in vitro: Effect of serum and oxygen tension. In Vitro. 1984;20:198–204. doi: 10.1007/BF02618188. PubMed DOI

Sharmin S., Sakata K., Kashiwagi K., Ueda S., Iwasaki S., Shirahata A., Igarashi K. Polyamine cytotoxicity in the presence of bovine serum amine oxidase. Biochem. Biophys. Res. Commun. 2001;282:228–235. doi: 10.1006/bbrc.2001.4569. PubMed DOI

Alarcon R.A. Fluorometric determination of acrolein and related compounds with m-aminophenol. Anal. Chem. 1968;40:1704–1708. doi: 10.1021/ac60267a019. PubMed DOI

Bonneau M.J., Poulin R. Spermine oxidation leads to necrosis with plasma membrane phosphatidylserine redistribution in mouse leukemia cells. Exp. Cell Res. 2000;259:23–34. doi: 10.1006/excr.2000.4974. PubMed DOI

Eisenberg T., Knauer H., Schauer A., Büttner S., Ruckenstuhl C., Carmona-Gutierrez D., Ring J., Schroeder S., Magnes C., Antonacci L., et al. Induction of autophagy by spermidine promotes longevity. Nat. Cell Biol. 2009;11:1305–1314. doi: 10.1038/ncb1975. PubMed DOI

Holbert C.E., Dunworth M., Foley J.R., Dunston T.T., Muray Stewart T., Casero R.A., Jr. Autophagy induction by exogenous polyamines is an artifact of bovine serum amine oxidase activity in culture serum. J. Biol. Chem. 2020;295:9061–9068. doi: 10.1074/jbc.RA120.013867. PubMed DOI PMC

Sakata K., Kashiwagi K., Sharmin S., Ueda S., Igarashi K. Acrolein produced from polyamines as one of the uraemic toxins. Biochem. Soc. Trans. 2003;31:371–374. doi: 10.1042/bst0310371. PubMed DOI

Tomitori H., Usui T., Saeki N., Ueda S., Kase H., Nishimura K., Kashiwagi K., Igarashi K. Polyamine oxidase and acrolein as novel biochemical markers of cerebral stroke. Stroke. 2005;36:2609–2613. doi: 10.1161/01.STR.0000190004.36793.2d. PubMed DOI

Lambert C., McCue J., Portas M., Ouyang Y., Li J., Rosano T.G., Lazis A., Freed B.M. Acrolein in cigarette smoke inhibits T-cell responses. J. Allergy Clin. Immunol. 2005;116:916–922. doi: 10.1016/j.jaci.2005.05.046. PubMed DOI

Lambert C., Li J., Jonscher K., Yang T.C., Reigan P., Quintana M., Harvey J., Freed B.M. Acrolein inhibits cytokine gene expression by alkylating cysteine and arginine residues in the NF-κB1 DNA binding domain. J. Biol. Chem. 2007;282:19666–19675. doi: 10.1074/jbc.M611527200. PubMed DOI

Fanali G., di Masi A., Trezza V., Marino M., Fasano M., Ascenzi P. Human serum albumin: From bench to bedside. Mol. Aspects Med. 2012;33:209–290. doi: 10.1016/j.mam.2011.12.002. PubMed DOI

Bein K., Birru R.L., Wells H., Larkin T.P., Cantrell P.S., Fagerburg M.V., Zeng X., Leikauf G.D. Albumin protects lung cells against acrolein cytotoxicity and acrolein-adducted albumin increases heme oxygenase 1 transcripts. Chem. Res. Toxicol. 2020;33:1969–1979. doi: 10.1021/acs.chemrestox.0c00146. PubMed DOI

Seiner D.R., LaButti J.N., Gates K.S. Kinetics and mechanism of protein tyrosine phosphatase 1B inactivation by acrolein. Chem. Res. Toxicol. 2007;20:1315–1320. doi: 10.1021/tx700213s. PubMed DOI PMC

Gella A., Durany N. Oxidative stress in Alzheimer disease. Cell Adh. Migr. 2009;3:88–93. doi: 10.4161/cam.3.1.7402. PubMed DOI PMC

Pocernich C.B., Butterfield A.D. Acrolein inhibits NADH-linked mitochondrial enzyme activity: Implications for Alzheimer´s disease. Neurotox. Res. 2003;57:515–520. doi: 10.1007/BF03033161. PubMed DOI

Fisher M. The ischemic penumbra: Identification, evolution and treatment concepts. Cerebrovasc. Dis. 2004;17((Suppl. 1)):1–6. doi: 10.1159/000074790. PubMed DOI

Li W., Yuan X.M., Ivanova S., Tracey K.J., Eaton J.W., Brunk U.T. 3-Aminopropanal, formed during cerebral ischaemia, is a potent lysosomotropic neurotoxin. Biochem. J. 2003;371:429–436. doi: 10.1042/bj20021520. PubMed DOI PMC

Yu Z., Li W., Hillman J., Brunk U.T. Human neuroblastoma (SH-SY5Y) cells are highly sensitive to the lysosomotrophic aldehyde 3-aminopropanal. Brain Res. 2004;1016:163–169. doi: 10.1016/j.brainres.2004.04.075. PubMed DOI

Ivanova S., Botchkina G.I., Al-Abed Y., Meistrell M., 3rd, Batliwalla F., Dubinsky J.M., Iadecola C., Wang H., Gregersen P.K., Eaton J.W., et al. Cerebral ischemia enhances polyamine oxidation: Identification of enzymatically formed 3-aminopropanal as an endogenous mediator of neuronal and glial cell death. J. Exp. Med. 1998;188:327–340. doi: 10.1084/jem.188.2.327. PubMed DOI PMC

Ivanova S., Batliwalla F., Mocco J., Kiss S., Huang J., Mack W., Coon A., Eaton J.W., Al-Abed Y., Gregersen P.K., et al. Neuroprotection in cerebral ischemia by neutralization of 3-aminopropanal. Proc. Natl. Acad. Sci. USA. 2002;99:5579–5584. doi: 10.1073/pnas.082609299. PubMed DOI PMC

Wood P.L., Khan M.A., Moskal J.R., Todd K.C., Tanay V.A.M.I., Baker G. Aldehyde load in ischemia-reperfusion brain injury: Neuroprotection by neutralization of reactive aldehydes with phenelzine. Brain Res. 2006;1122:184–190. doi: 10.1016/j.brainres.2006.09.003. PubMed DOI

Kim G.H., Kellner C.P., Hickman Z.L., Zacharia B.E., Starke R.M., Hwang B.Y., Ducruet A.F., Fernandez L., Mayer S.A., Tracey K.J., et al. A phase I clinical trial of tiopronin, a putative neuroprotective agent, in aneurysmal subarachnoid hemorrhage. Neurosurgery. 2010;67:182–185. doi: 10.1227/01.NEU.0000370919.93259.3C. PubMed DOI PMC

Ironside N., Christophe B., Bruce S., Carpenter A.M., Robison T., Yoh N., Cremers S., Landry D., Frey H.P., Chen C.J., et al. A phase II randomized controlled trial of tiopronin for aneurysmal subarachnoid hemorrhage. J. Neurosurg. 2020;133:351–359. doi: 10.3171/2019.4.JNS19478. PubMed DOI

Yu Z., Li W., Brunk U.T. 3-Aminopropanal is a lysosomotropic aldehyde that causes oxidative stress and apoptosis by rupturing lysosomes. APMIS. 2003;111:643–652. doi: 10.1034/j.1600-0463.2003.1110607.x. PubMed DOI

Kaufmann A.M., Krise J.P. Niemann-Pick C1 functions in regulating lysosomal amine content. J. Biol. Chem. 2008;283:24584–24593. doi: 10.1074/jbc.M803715200. PubMed DOI PMC

Wood P.L., Khan M.A., Moskal J.R. The concept of “aldehyde load” in neurodegenerative mechanisms: Cytotoxicity of the polyamine degradation products hydrogen peroxide, acrolein, 3-aminopropanal, 3-acetamidopropanal and 4-aminobutanal in a retinal ganglion cell line. Brain Res. 2007;1145:150–156. doi: 10.1016/j.brainres.2006.10.004. PubMed DOI

Bellier J., Nokin M.J., Lardé E., Karoyan P., Peulen O., Castronovo V., Bellahcène A. Methylglyoxal, a potent inducer of AGEs, connects between diabetes and cancer. Diabetes Res. Clin. Pract. 2019;148:200–211. doi: 10.1016/j.diabres.2019.01.002. PubMed DOI

Ichihashi K., Osawa T., Toyokuni S., Uchida K. Endogenous formation of protein adducts with carcinogenic aldehydes. Implications for oxidative stress. J. Biol. Chem. 2001;276:23903–23913. doi: 10.1074/jbc.M101947200. PubMed DOI

Vasil’ev Y.V., Tzeng S.C., Huang L., Maier C.S. Protein modifications by electrophilic lipoxidation products: Adduct formation, chemical strategies and tandem mass spectrometry for their detection and identification. Mass Spectrom. Rev. 2014;33:157–182. doi: 10.1002/mas.21389. PubMed DOI PMC

Lo T.W.C., Westwood M.E., McLellan A.C., Selwood T., Thornalley P.J. Binding and modification of proteins by methylglyoxal under physiological conditions. A kinetic and mechanistic study with Nα-acetylarginine, Nα-acetylcysteine, and Nα-acetyllysine and bovine serum albumin. J. Biol. Chem. 1994;269:32299–32305. doi: 10.1016/S0021-9258(18)31635-1. PubMed DOI

Furuhata A., Nakamura M., Osawa T., Uchida K. Thiolation of protein-bound carcinogenic aldehyde. An electrophilic acrolein-lysine adduct that covalently binds to thiols. J. Biol. Chem. 2002;277:27919–27928. doi: 10.1074/jbc.M202794200. PubMed DOI

Chen H.J.C. Mass spectrometry analysis of DNA and protein adducts as biomarker in human exposure to cigarette smoking: Acrolein as an example. Chem. Res. Toxicol. 2023;36:132–140. doi: 10.1021/acs.chemrestox.2c00354. PubMed DOI

Afonso C.B., Sousa B.C., Pitt A.R., Spickett C.M. A mass spectrometry approach for the identification and localization of small aldehyde modifications of proteins. Arch. Biochem. Biophys. 2018;646:38–45. doi: 10.1016/j.abb.2018.03.026. PubMed DOI

Sousa B.C., Ahmed T., Dann W.L., Ashman J., Guy A., Durand T., Pitt A.R., Spickett C.M. Short-chain lipid peroxidation products form covalent adducts with pyruvate kinase and inhibit its activity in vitro and in breast cancer cells. Free Radic. Biol. Med. 2019;144:223–233. doi: 10.1016/j.freeradbiomed.2019.05.028. PubMed DOI

Kaminskas L.M., Pyke S.M., Burcham P.C. Differences in lysine adduction by acrolein and methyl vinyl ketone: Implications for cytotoxicity in cultured hepatocytes. Chem. Res. Toxicol. 2005;18:1627–1633. doi: 10.1021/tx0502387. PubMed DOI

Cai J., Bhatnagar A., Pierce W.M., Jr. Protein modification by acrolein: Formation and stability of cysteine adducts. Chem. Res. Toxicol. 2009;22:708–716. doi: 10.1021/tx800465m. PubMed DOI PMC

Averill-Bates D.A., Agostinelli E., Przybytkowski E., Mondovì B. Aldehyde dehydrogenase and cytotoxicity of purified bovine serum amine oxidase and spermine in Chinese hamster ovary cells. Biochem. Cell Biol. 1994;72:36–42. doi: 10.1139/o94-006. PubMed DOI

Averill-Bates D.A., Ke Q., Tanel A., Roy J., Fortier G., Agostinelli E. Mechanism of cell death by spermine and amine oxidase in mouse melanoma cells. Int. J. Oncol. 2008;32:79–88. doi: 10.3892/ijo.32.1.79. PubMed DOI

Brocker C., Vasiliou M., Carpenter S., Carpenter C., Zhang Y., Wang X., Kotchoni S.O., Wood A.J., Kirch H.H., Kopečný D., et al. Aldehyde dehydrogenase (ALDH) superfamily in plants: Gene nomenclature and comparative genomics. Planta. 2013;237:189–210. doi: 10.1007/s00425-012-1749-0. PubMed DOI PMC

Riveros-Rosas H., González-Segura L., Julián-Sánchez A., Díaz-Sánchez Á.G., Muñoz-Clares R.A. Structural determinants of substrate specificity in aldehyde dehydrogenases. Chem. Biol. Interact. 2013;202:51–61. doi: 10.1016/j.cbi.2012.11.015. PubMed DOI

Vasiliou V., Bairoch A., Tipton K.F., Nebert D.W. Eukaryotic aldehyde dehydrogenase (ALDH) genes: Human polymorphisms, and recommended nomenclature based on divergent evolution and chromosomal mapping. Pharmacogenetics. 1999;9:421–434. PubMed

Jackson B., Brocker C., Thompson D.C., Black W., Vasiliou K., Nebert D.W., Vasilou V. Update on the aldehyde dehydrogenase gene (ALDH) superfamily. Hum. Genom. 2011;5:283–303. doi: 10.1186/1479-7364-5-4-283. PubMed DOI PMC

Riveros-Rosas H., Julián-Sánchez A., Moreno-Hagelsieb G., Muñoz-Clares R. Aldehyde dehydrogenase diversity in bacteria of the Pseudomonas genus. Chem. Biol. Interact. 2019;304:83–87. doi: 10.1016/j.cbi.2019.03.006. PubMed DOI

Ambroziak W., Kurys G., Pietruszko R. Aldehyde dehydrogenase (EC 1.2.1.3): Comparison of subcellular localization of the third isozyme that dehydrogenates γ-aminobutyraldehyde in rat, guinea pig and human liver. Comp. Biochem. Physiol. 1991;100B:321–327. doi: 10.1016/0305-0491(91)90382-N. PubMed DOI

Tylichová M., Kopečný D., Moréra S., Briozzo P., Lenobel R., Snégaroff J., Šebela M. Structural and functional characterization of plant aminoaldehyde dehydrogenase from Pisum sativum with a broad specificity for natural and synthetic aminoaldehydes. J. Mol. Biol. 2010;396:870–882. doi: 10.1016/j.jmb.2009.12.015. PubMed DOI

Shortall K., Djeghader A., Magner E., Soulimane T. Insights into aldehyde dehydrogenase enzymes: A structural perspective. Front. Mol. Biosci. 2021;8:659550. doi: 10.3389/fmolb.2021.659550. PubMed DOI PMC

Liu Z.J., Sun Y.J., Rose J., Chung Y.J., Hsiao C.D., Chang W.R., Kuo I., Perozich J., Lindahl R., Hempel J., et al. The first structure of an aldehyde dehydrogenase reveals novel interactions between NAD and the Rossmann fold. Nat. Struct. Biol. 1997;4:317–326. doi: 10.1038/nsb0497-317. PubMed DOI

Cushman J.C. Osmoregulation in plants: Implications for agriculture. Am. Zool. 2001;41:758–769. doi: 10.1093/icb/41.4.758. DOI

Zarei A., Trobacher C.P., Shelp B.J. Arabidopsis aldehyde dehydrogenase 10 family members confer salt tolerance through putrescine-derived 4-aminobutyrate (GABA) production. Sci. Rep. 2016;6:35115. doi: 10.1038/srep35115. PubMed DOI PMC

Končitíková R., Vigouroux A., Kopečná M., Šebela M., Moréra S., Kopečný D. Kinetic and structural analysis of human ALDH9A1. Biosci. Rep. 2019;39:BSR20190558. doi: 10.1042/BSR20190558. PubMed DOI PMC

Kopečný D., Tylichová M., Snégaroff J., Popelková H., Šebela M. Carboxylate and aromatic active-site residues are determinants of high-affinity binding of ω-aminoaldehydes to plant aminoaldehyde dehydrogenases. FEBS J. 2011;278:3130–3139. doi: 10.1111/j.1742-4658.2011.08239.x. PubMed DOI

Kopečný D., Končitíková R., Tylichová M., Vigouroux A., Moskalíková H., Soural M., Šebela M., Moréra S. Plant ALDH10 family: Identifying critical residues for substrate specificity and trapping a thiohemiacetal intermediate. J. Biol. Chem. 2013;95:889–902. doi: 10.1074/jbc.M112.443952. PubMed DOI PMC

Díaz-Sánchez Á.G., González-Segura L., Mújica-Jiménez C., Rudiño-Piñera E., Montiel C., Martínez-Castilla L.P., Muñoz-Clares R.A. Amino acid residues critical for the specificity for betaine aldehyde of the plant ALDH10 isoenzyme involved in the synthesis of glycine betaine. Plant Physiol. 2012;158:1570–1582. doi: 10.1104/pp.112.194514. PubMed DOI PMC

Sánchez-Linares I., Pérez-Sánchez H., Cecilia J.M., García J.M. High-throughput parallel blind virtual screening using BINDSURF. BMC Bioinform. 2012;13:S13. doi: 10.1186/1471-2105-13-S14-S13. PubMed DOI PMC

Calcabrini A., Arancia G., Marra M., Crateri P., Befani O., Martone A., Agostinelli E. Enzymatic oxidation products of spermine induce greater cytotoxic effects on human multidrug- resistant colon carcinoma cells (LoVo) than on their wild type counterparts. Int. J. Cancer. 2002;99:43–52. doi: 10.1002/ijc.10310. PubMed DOI

Agostinelli E., Tempera G., Viceconte N., Saccoccio S., Battaglia V., Grancara S., Toninello A., Stevanato R. Potential anticancer application of polyamine oxidation products formed by amine oxidase: A new therapeutic approach. Amino Acids. 2010;38:353–368. doi: 10.1007/s00726-009-0431-8. PubMed DOI

Agostinelli E., Dalla Vedova L., Belli F., Condello M., Arancia G., Seiler N. Sensitization of human colon adenocarcinoma cells (LoVo) to reactive oxygen species by a lysosomotropic compound. Int. J. Oncol. 2006;29:947–955. doi: 10.3892/ijo.29.4.947. PubMed DOI

Averill-Bates D.A., Chérif A., Agostinelli E., Tanel A., Fortier G. Anti-tumoral effect of native and immobilized bovine serum amine oxidase in a mouse melanoma model. Biochem. Pharmacol. 2005;69:1693–1704. doi: 10.1016/j.bcp.2005.02.025. PubMed DOI

Ohkubo S., Mancinelli R., Miglietta S., Cona A., Angelini R., Canettieri G., Spandidos D.A., Gaudio E., Agostinelli E. Maize polyamine oxidase in the presence of spermine/spermidine induces the apoptosis of LoVo human colon adenocarcinoma cells. Int. J. Oncol. 2019;54:2080–2094. doi: 10.3892/ijo.2019.4780. PubMed DOI PMC

Cona A., Federico R., Gramiccia M., Orsini S., Gradoni L. The amino aldehydes produced by spermine and spermidine oxidation with maize polyamine oxidase have anti-leishmanial effect. Biotechnol. Appl. Biochem. 1991;14:54–59. doi: 10.1111/j.1470-8744.1991.tb00165.x. PubMed DOI

Massa S., Spanò D., Pintus F., Medda R., Floris G. Oxidation of di- and polyamines: In vitro effect of amino aldehydes on the vitality of Leishmania promastigotes. Med. Chem. Res. 2010;19:77–83. doi: 10.1007/s00044-009-9173-0. DOI

Kashiwagi K., Igarashi K. Molecular characteristics of toxicity of acrolein produced from spermine. Biomolecules. 2023;13:298. doi: 10.3390/biom13020298. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...