Polyamine-Derived Aminoaldehydes and Acrolein: Cytotoxicity, Reactivity and Analysis of the Induced Protein Modifications
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
IGA_PrF_2023_022
Palacký University, Olomouc
PubMed
37959847
PubMed Central
PMC10648994
DOI
10.3390/molecules28217429
PII: molecules28217429
Knihovny.cz E-zdroje
- Klíčová slova
- 3-aminopropanal, Michael adduct, Schiff base, acrolein, aldehyde dehydrogenase, amine oxidase, aminoaldehyde, cytotoxicity, glutathione, protein modification,
- MeSH
- akrolein * farmakologie MeSH
- aldehydy farmakologie MeSH
- polyaminy * MeSH
- spermidin farmakologie MeSH
- spermin farmakologie MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- 3-aminopropionaldehyde MeSH Prohlížeč
- akrolein * MeSH
- aldehydy MeSH
- polyaminy * MeSH
- spermidin MeSH
- spermin MeSH
Polyamines participate in the processes of cell growth and development. The degradation branch of their metabolism involves amine oxidases. The oxidation of spermine, spermidine and putrescine releases hydrogen peroxide and the corresponding aminoaldehyde. Polyamine-derived aminoaldehydes have been found to be cytotoxic, and they represent the subject of this review. 3-aminopropanal disrupts the lysosomal membrane and triggers apoptosis or necrosis in the damaged cells. It is implicated in the pathogenesis of cerebral ischemia. Furthermore, 3-aminopropanal yields acrolein through the elimination of ammonia. This reactive aldehyde is also generated by the decomposition of aminoaldehydes produced in the reaction of serum amine oxidase with spermidine or spermine. In addition, acrolein is a common environmental pollutant. It causes covalent modifications of proteins, including carbonylation, the production of Michael-type adducts and cross-linking, and it has been associated with inflammation-related diseases. APAL and acrolein are detoxified by aldehyde dehydrogenases and other mechanisms. High-performance liquid chromatography, immunochemistry and mass spectrometry have been largely used to analyze the presence of polyamine-derived aminoaldehydes and protein modifications elicited by their effect. However, the main and still open challenge is to find clues for discovering clear linkages between aldehyde-induced modifications of specific proteins and the development of various diseases.
Zobrazit více v PubMed
LoPachin R.M., Gavin T. Molecular mechanisms of aldehyde toxicity: A chemical perspective. Chem. Res. Toxicol. 2014;27:1081–1091. doi: 10.1021/tx5001046. PubMed DOI PMC
Vistoli G., De Maddis D., Cipak A., Zarkovic N., Carini M., Aldini G. Advanced glycoxidation and lipoxidation end products (AGEs and ALEs): An overview of their mechanisms of formation. Free Rad. Res. 2013;47((Suppl. 1)):3–27. doi: 10.3109/10715762.2013.815348. PubMed DOI
Lai S.W.T., Lopez Gonzalez E.J., Zoukari T., Ki P., Shuck S.C. Methylglyoxal and its adducts: Induction, repair, and association with disease. Chem. Res. Toxicol. 2022;35:1720–1746. doi: 10.1021/acs.chemrestox.2c00160. PubMed DOI PMC
Domingues R.M., Domingues P., Melo T., Pérez-Sala D., Reis A., Spickett C.M. Lipoxidation adducts with peptides and proteins: Deleterious modifications or signaling mechanisms? J. Proteom. 2013;92:110–131. doi: 10.1016/j.jprot.2013.06.004. PubMed DOI
Stevens J.F., Maier C.S. Acrolein: Sources, metabolism and biomolecular interactions relevant to human health and disease. Mol. Nutr. Food. Res. 2008;52:7–25. doi: 10.1002/mnfr.200700412. PubMed DOI PMC
Guéraud F., Atalay M., Bresgen N., Cipak A., Eckl P.M., Huc L., Jouanin I., Siems W., Uchida K. Chemistry and biochemistry of lipid peroxidation products. Free Radic. Res. 2010;44:1098–1124. doi: 10.3109/10715762.2010.498477. PubMed DOI
Uchida K., Kanematsu M., Sakai K., Matsuda T., Hattori N., Mizuno Y., Suzuki D., Miyata T., Noguchi N., Niki E., et al. Protein-bound acrolein: Potential markers for oxidative stress. Proc. Natl. Acad. Sci. USA. 1998;95:4882–4887. doi: 10.1073/pnas.95.9.4882. PubMed DOI PMC
Furuhata A., Ishii T., Kumazawa S., Yamada T., Nakayama T., Uchida K. Nε-(3-methylpyridinium)lysine, a major antigenic adduct generated in acrolein-modified protein. J. Biol. Chem. 2003;278:48658–48665. doi: 10.1074/jbc.M309401200. PubMed DOI
Suzuki Y.J., Carini M., Butterfield D.A. Protein carbonylation. Antioxid. Redox Signal. 2010;12:323–325. doi: 10.1089/ars.2009.2887. PubMed DOI PMC
Baron K., Stasolla C. The role of polyamines during in vivo and in vitro development. In Vitro Cell. Dev. Biol.-Plant. 2008;44:384–395. doi: 10.1007/s11627-008-9176-4. DOI
Casero R.A., Jr., Pegg A.E. Polyamine catabolism and disease. Biochem. J. 2009;421:323–338. doi: 10.1042/BJ20090598. PubMed DOI PMC
Chen D., Shao Q., Yin L., Younis A., Zheng B. Polyamine function in plants: Metabolism, regulation on development, and roles in abiotic stress responses. Front. Plant Sci. 2019;9:1945. doi: 10.3389/fpls.2018.01945. PubMed DOI PMC
Sari I.N., Setiawan T., Kim K.S., Wijaya Y.T., Cho K.W., Kwon H.Y. Metabolism and function of polyamines in cancer progression. Cancer Lett. 2021;519:91–104. doi: 10.1016/j.canlet.2021.06.020. PubMed DOI
O’Brien P.J., Siraki A.G., Shangari N. Aldehyde sources, metabolism, molecular toxicity mechanisms, and possible effects on human health. Crit. Rev. Toxicol. 2005;35:609–662. doi: 10.1080/10408440591002183. PubMed DOI
Casero R.A., Jr., Stewart T.M., Pegg A.E. Polyamine metabolism and cancer: Treatments, challenges and opportunities. Nat. Rev. Cancer. 2018;18:681–695. doi: 10.1038/s41568-018-0050-3. PubMed DOI PMC
Pietrangeli P., Federico R., Mondovì B., Morpurgo L. Substrate specificity of copper-containing plant amine oxidases. J. Inorg. Biochem. 2007;101:997–1004. doi: 10.1016/j.jinorgbio.2007.03.014. PubMed DOI
Pietrangeli P., Morpurgo L., Mondovì B., Di Paolo M.L., Rigo A. Soluble copper amine oxidases from mammals. In: Floris G., Mondovì B., editors. Copper Amine Oxidases: Structures, Catalytic Mechanisms and Role in Pathophysiology. CRC Press; Boca Raton, FL, USA: 2009. pp. 51–68.
Tabor C.W., Tabor H., Bachrach U. Identification of the aminoaldehydes produced by the oxidation of spermine and spermidine with purified plasma amine oxidase. J. Biol. Chem. 1964;239:2194–2203. doi: 10.1016/S0021-9258(20)82220-0. PubMed DOI
Kimes B.W., Morris D.R. Preparation and stability of oxidized polyamines. Biochim. Biophys. Acta. 1971;228:223–234. doi: 10.1016/0005-2787(71)90562-4. PubMed DOI
Seiler N., Knödgen B., Haegele K. N-(3-Aminopropyl)pyrrolidin-2-one, a product of spermidine catabolism in vivo. Biochem. J. 1982;208:189–197. doi: 10.1042/bj2080189. PubMed DOI PMC
Houen G., Bock K., Jensen A.L. HPLC and NMR investigation of the serum amine oxidase catalyzed oxidation of polyamines. Acta Chem. Scand. 1994;48:52–60. doi: 10.3891/acta.chem.scand.48-0052. PubMed DOI
Quash G., Taylor D.R. Serum β-aminopropionaldehyde: Identification and origin. Clin. Chim. Acta. 1970;30:17–23. doi: 10.1016/0009-8981(70)90187-7. PubMed DOI
Seiler N. Oxidation of polyamines and brain injury. Neurochem. Res. 2000;25:471–490. doi: 10.1023/A:1007508008731. PubMed DOI
Chae T.U., Kim W.J., Choi S., Park S.J., Lee S.Y. Metabolic engineering of Escherichia coli for the production of 1,3-diaminopropane, a three carbon diamine. Sci. Rep. 2015;5:13040. doi: 10.1038/srep13040. PubMed DOI PMC
Lee Y., Sayre L.M. Reaffirmation that metabolism of polyamines by bovine plasma amine oxidase occurs strictly at the primary amino termini. J. Biol. Chem. 1998;273:19490–19494. doi: 10.1074/jbc.273.31.19490. PubMed DOI
Houen G., Struve C., Søndergaard R., Friis T., Anthoni U., Nielsen P.H., Christophersen C., Petersen B.O., Duus J.Ø. Substrate specificity of the bovine serum amine oxidase and in situ characterization of aminoaldehydes by NMR spectroscopy. Biorg. Med. Chem. 2005;13:3783–3796. doi: 10.1016/j.bmc.2005.03.020. PubMed DOI
Šebela M., Brauner F., Radová A., Jacobsen S., Havliš J., Galuszka P., Peč P. Characterisation of a homogeneous plant aminoaldehyde dehydrogenase. Biochim. Biophys. Acta-Protein Struct. Molec. Enzym. 2000;1480:329–341. doi: 10.1016/S0167-4838(00)00086-8. PubMed DOI
Struve C., Christophersen C. Structural equilibrium and ring-chain tautomerism of aqueous solutions of 4-aminobutyraldehyde. Heterocycles. 2003;60:1907–1914. doi: 10.3987/COM-03-9802. DOI
Šebela M., Radová A., Angelini R., Tavladoraki P., Frébort I., Peč P. FAD-containing polyamine oxidases: A timely challenge for researchers in biochemistry and physiology of plants. Plant Sci. 2001;160:197–207. doi: 10.1016/S0168-9452(00)00380-0. PubMed DOI
Padiglia A., Medda R., Paci M., Sette M., Lorrai A., Floris G. Characterization of a cyclic compound fomed after spermine oxidation by lentil amine oxidase. Biochem. Mol. Biol. Int. 1997;41:407–413. doi: 10.1080/15216549700201421. PubMed DOI
Guo Z., Zhang Q., Zou H., Guo B., Ni J. A method for the analysis of low-mass molecules by maldi-tof mass spectrometry. Anal. Chem. 2002;74:1637–1641. doi: 10.1021/ac010979m. PubMed DOI
Federico R., Ercolini L., Laurenzi M., Angelini R. Oxidation of acetylpolyamines by maize polyamine oxidase. Phytochemistry. 1996;43:339–341. doi: 10.1016/0031-9422(96)00316-0. DOI
Cervelli M., Amendola R., Polticelli F., Mariottini P. Spermine oxidase: Ten years after. Amino Acids. 2012;42:441–450. doi: 10.1007/s00726-011-1014-z. PubMed DOI
Moschou P.N., Sanmartin M., Andriopoulou A.H., Rojo E., Sanchez-Serrano J.J., Roubelakis-Angelakis K.A. Bridging the gap between plant and mammalian polyamine catabolism: A novel peroxisomal polyamine oxidase responsible for a full back-conversion pathway in Arabidopsis. Plant Physiol. 2008;147:1845–1857. doi: 10.1104/pp.108.123802. PubMed DOI PMC
Fincato P., Moschou P.N., Spedaletti V., Tavazza R., Angelini R., Federico R., Roubelakis-Angelakis K.A., Tavladoraki P. Functional diversity inside the Arabidopsis polyamine oxidase gene family. J. Exp. Bot. 2011;62:1155–1168. doi: 10.1093/jxb/erq341. PubMed DOI
Häkkinen M.R., Hyvönen M.T., Auriola S., Casero R.A., Jr., Vepsäläinen J., Khomutov A.R., Alhonen L., Keinänen T.A. Metabolism of N-alkylated spermine analogues by polyamine and spermine oxidases. Amino Acids. 2010;38:369–381. doi: 10.1007/s00726-009-0429-2. PubMed DOI PMC
Moriya S., Iwasaki K., Samejima K., Takao K., Kohda K., Hiramatsu K., Kawakita M. A mass spectrometric method to determine activities of enzymes involved in polyamine catabolism. Anal. Chim. Acta. 2012;748:45–52. doi: 10.1016/j.aca.2012.08.031. PubMed DOI
Morgan D.M.L., Bachrach U., Assaraf Y.G., Harari E., Golenser J. The effect of purified aminoaldehydes produced by polyamine oxidation on the development in vitro of Plasmodium falciparum in normal and glucose-6-phosphate-dehydrogenase-deficient erythrocytes. Biochem. J. 1986;236:97–101. doi: 10.1042/bj2360097. PubMed DOI PMC
Hegre O.D., Marshall S., Hickey G.E. Spermidine cytotoxicity in vitro: Effect of serum and oxygen tension. In Vitro. 1984;20:198–204. doi: 10.1007/BF02618188. PubMed DOI
Sharmin S., Sakata K., Kashiwagi K., Ueda S., Iwasaki S., Shirahata A., Igarashi K. Polyamine cytotoxicity in the presence of bovine serum amine oxidase. Biochem. Biophys. Res. Commun. 2001;282:228–235. doi: 10.1006/bbrc.2001.4569. PubMed DOI
Alarcon R.A. Fluorometric determination of acrolein and related compounds with m-aminophenol. Anal. Chem. 1968;40:1704–1708. doi: 10.1021/ac60267a019. PubMed DOI
Bonneau M.J., Poulin R. Spermine oxidation leads to necrosis with plasma membrane phosphatidylserine redistribution in mouse leukemia cells. Exp. Cell Res. 2000;259:23–34. doi: 10.1006/excr.2000.4974. PubMed DOI
Eisenberg T., Knauer H., Schauer A., Büttner S., Ruckenstuhl C., Carmona-Gutierrez D., Ring J., Schroeder S., Magnes C., Antonacci L., et al. Induction of autophagy by spermidine promotes longevity. Nat. Cell Biol. 2009;11:1305–1314. doi: 10.1038/ncb1975. PubMed DOI
Holbert C.E., Dunworth M., Foley J.R., Dunston T.T., Muray Stewart T., Casero R.A., Jr. Autophagy induction by exogenous polyamines is an artifact of bovine serum amine oxidase activity in culture serum. J. Biol. Chem. 2020;295:9061–9068. doi: 10.1074/jbc.RA120.013867. PubMed DOI PMC
Sakata K., Kashiwagi K., Sharmin S., Ueda S., Igarashi K. Acrolein produced from polyamines as one of the uraemic toxins. Biochem. Soc. Trans. 2003;31:371–374. doi: 10.1042/bst0310371. PubMed DOI
Tomitori H., Usui T., Saeki N., Ueda S., Kase H., Nishimura K., Kashiwagi K., Igarashi K. Polyamine oxidase and acrolein as novel biochemical markers of cerebral stroke. Stroke. 2005;36:2609–2613. doi: 10.1161/01.STR.0000190004.36793.2d. PubMed DOI
Lambert C., McCue J., Portas M., Ouyang Y., Li J., Rosano T.G., Lazis A., Freed B.M. Acrolein in cigarette smoke inhibits T-cell responses. J. Allergy Clin. Immunol. 2005;116:916–922. doi: 10.1016/j.jaci.2005.05.046. PubMed DOI
Lambert C., Li J., Jonscher K., Yang T.C., Reigan P., Quintana M., Harvey J., Freed B.M. Acrolein inhibits cytokine gene expression by alkylating cysteine and arginine residues in the NF-κB1 DNA binding domain. J. Biol. Chem. 2007;282:19666–19675. doi: 10.1074/jbc.M611527200. PubMed DOI
Fanali G., di Masi A., Trezza V., Marino M., Fasano M., Ascenzi P. Human serum albumin: From bench to bedside. Mol. Aspects Med. 2012;33:209–290. doi: 10.1016/j.mam.2011.12.002. PubMed DOI
Bein K., Birru R.L., Wells H., Larkin T.P., Cantrell P.S., Fagerburg M.V., Zeng X., Leikauf G.D. Albumin protects lung cells against acrolein cytotoxicity and acrolein-adducted albumin increases heme oxygenase 1 transcripts. Chem. Res. Toxicol. 2020;33:1969–1979. doi: 10.1021/acs.chemrestox.0c00146. PubMed DOI
Seiner D.R., LaButti J.N., Gates K.S. Kinetics and mechanism of protein tyrosine phosphatase 1B inactivation by acrolein. Chem. Res. Toxicol. 2007;20:1315–1320. doi: 10.1021/tx700213s. PubMed DOI PMC
Gella A., Durany N. Oxidative stress in Alzheimer disease. Cell Adh. Migr. 2009;3:88–93. doi: 10.4161/cam.3.1.7402. PubMed DOI PMC
Pocernich C.B., Butterfield A.D. Acrolein inhibits NADH-linked mitochondrial enzyme activity: Implications for Alzheimer´s disease. Neurotox. Res. 2003;57:515–520. doi: 10.1007/BF03033161. PubMed DOI
Fisher M. The ischemic penumbra: Identification, evolution and treatment concepts. Cerebrovasc. Dis. 2004;17((Suppl. 1)):1–6. doi: 10.1159/000074790. PubMed DOI
Li W., Yuan X.M., Ivanova S., Tracey K.J., Eaton J.W., Brunk U.T. 3-Aminopropanal, formed during cerebral ischaemia, is a potent lysosomotropic neurotoxin. Biochem. J. 2003;371:429–436. doi: 10.1042/bj20021520. PubMed DOI PMC
Yu Z., Li W., Hillman J., Brunk U.T. Human neuroblastoma (SH-SY5Y) cells are highly sensitive to the lysosomotrophic aldehyde 3-aminopropanal. Brain Res. 2004;1016:163–169. doi: 10.1016/j.brainres.2004.04.075. PubMed DOI
Ivanova S., Botchkina G.I., Al-Abed Y., Meistrell M., 3rd, Batliwalla F., Dubinsky J.M., Iadecola C., Wang H., Gregersen P.K., Eaton J.W., et al. Cerebral ischemia enhances polyamine oxidation: Identification of enzymatically formed 3-aminopropanal as an endogenous mediator of neuronal and glial cell death. J. Exp. Med. 1998;188:327–340. doi: 10.1084/jem.188.2.327. PubMed DOI PMC
Ivanova S., Batliwalla F., Mocco J., Kiss S., Huang J., Mack W., Coon A., Eaton J.W., Al-Abed Y., Gregersen P.K., et al. Neuroprotection in cerebral ischemia by neutralization of 3-aminopropanal. Proc. Natl. Acad. Sci. USA. 2002;99:5579–5584. doi: 10.1073/pnas.082609299. PubMed DOI PMC
Wood P.L., Khan M.A., Moskal J.R., Todd K.C., Tanay V.A.M.I., Baker G. Aldehyde load in ischemia-reperfusion brain injury: Neuroprotection by neutralization of reactive aldehydes with phenelzine. Brain Res. 2006;1122:184–190. doi: 10.1016/j.brainres.2006.09.003. PubMed DOI
Kim G.H., Kellner C.P., Hickman Z.L., Zacharia B.E., Starke R.M., Hwang B.Y., Ducruet A.F., Fernandez L., Mayer S.A., Tracey K.J., et al. A phase I clinical trial of tiopronin, a putative neuroprotective agent, in aneurysmal subarachnoid hemorrhage. Neurosurgery. 2010;67:182–185. doi: 10.1227/01.NEU.0000370919.93259.3C. PubMed DOI PMC
Ironside N., Christophe B., Bruce S., Carpenter A.M., Robison T., Yoh N., Cremers S., Landry D., Frey H.P., Chen C.J., et al. A phase II randomized controlled trial of tiopronin for aneurysmal subarachnoid hemorrhage. J. Neurosurg. 2020;133:351–359. doi: 10.3171/2019.4.JNS19478. PubMed DOI
Yu Z., Li W., Brunk U.T. 3-Aminopropanal is a lysosomotropic aldehyde that causes oxidative stress and apoptosis by rupturing lysosomes. APMIS. 2003;111:643–652. doi: 10.1034/j.1600-0463.2003.1110607.x. PubMed DOI
Kaufmann A.M., Krise J.P. Niemann-Pick C1 functions in regulating lysosomal amine content. J. Biol. Chem. 2008;283:24584–24593. doi: 10.1074/jbc.M803715200. PubMed DOI PMC
Wood P.L., Khan M.A., Moskal J.R. The concept of “aldehyde load” in neurodegenerative mechanisms: Cytotoxicity of the polyamine degradation products hydrogen peroxide, acrolein, 3-aminopropanal, 3-acetamidopropanal and 4-aminobutanal in a retinal ganglion cell line. Brain Res. 2007;1145:150–156. doi: 10.1016/j.brainres.2006.10.004. PubMed DOI
Bellier J., Nokin M.J., Lardé E., Karoyan P., Peulen O., Castronovo V., Bellahcène A. Methylglyoxal, a potent inducer of AGEs, connects between diabetes and cancer. Diabetes Res. Clin. Pract. 2019;148:200–211. doi: 10.1016/j.diabres.2019.01.002. PubMed DOI
Ichihashi K., Osawa T., Toyokuni S., Uchida K. Endogenous formation of protein adducts with carcinogenic aldehydes. Implications for oxidative stress. J. Biol. Chem. 2001;276:23903–23913. doi: 10.1074/jbc.M101947200. PubMed DOI
Vasil’ev Y.V., Tzeng S.C., Huang L., Maier C.S. Protein modifications by electrophilic lipoxidation products: Adduct formation, chemical strategies and tandem mass spectrometry for their detection and identification. Mass Spectrom. Rev. 2014;33:157–182. doi: 10.1002/mas.21389. PubMed DOI PMC
Lo T.W.C., Westwood M.E., McLellan A.C., Selwood T., Thornalley P.J. Binding and modification of proteins by methylglyoxal under physiological conditions. A kinetic and mechanistic study with Nα-acetylarginine, Nα-acetylcysteine, and Nα-acetyllysine and bovine serum albumin. J. Biol. Chem. 1994;269:32299–32305. doi: 10.1016/S0021-9258(18)31635-1. PubMed DOI
Furuhata A., Nakamura M., Osawa T., Uchida K. Thiolation of protein-bound carcinogenic aldehyde. An electrophilic acrolein-lysine adduct that covalently binds to thiols. J. Biol. Chem. 2002;277:27919–27928. doi: 10.1074/jbc.M202794200. PubMed DOI
Chen H.J.C. Mass spectrometry analysis of DNA and protein adducts as biomarker in human exposure to cigarette smoking: Acrolein as an example. Chem. Res. Toxicol. 2023;36:132–140. doi: 10.1021/acs.chemrestox.2c00354. PubMed DOI
Afonso C.B., Sousa B.C., Pitt A.R., Spickett C.M. A mass spectrometry approach for the identification and localization of small aldehyde modifications of proteins. Arch. Biochem. Biophys. 2018;646:38–45. doi: 10.1016/j.abb.2018.03.026. PubMed DOI
Sousa B.C., Ahmed T., Dann W.L., Ashman J., Guy A., Durand T., Pitt A.R., Spickett C.M. Short-chain lipid peroxidation products form covalent adducts with pyruvate kinase and inhibit its activity in vitro and in breast cancer cells. Free Radic. Biol. Med. 2019;144:223–233. doi: 10.1016/j.freeradbiomed.2019.05.028. PubMed DOI
Kaminskas L.M., Pyke S.M., Burcham P.C. Differences in lysine adduction by acrolein and methyl vinyl ketone: Implications for cytotoxicity in cultured hepatocytes. Chem. Res. Toxicol. 2005;18:1627–1633. doi: 10.1021/tx0502387. PubMed DOI
Cai J., Bhatnagar A., Pierce W.M., Jr. Protein modification by acrolein: Formation and stability of cysteine adducts. Chem. Res. Toxicol. 2009;22:708–716. doi: 10.1021/tx800465m. PubMed DOI PMC
Averill-Bates D.A., Agostinelli E., Przybytkowski E., Mondovì B. Aldehyde dehydrogenase and cytotoxicity of purified bovine serum amine oxidase and spermine in Chinese hamster ovary cells. Biochem. Cell Biol. 1994;72:36–42. doi: 10.1139/o94-006. PubMed DOI
Averill-Bates D.A., Ke Q., Tanel A., Roy J., Fortier G., Agostinelli E. Mechanism of cell death by spermine and amine oxidase in mouse melanoma cells. Int. J. Oncol. 2008;32:79–88. doi: 10.3892/ijo.32.1.79. PubMed DOI
Brocker C., Vasiliou M., Carpenter S., Carpenter C., Zhang Y., Wang X., Kotchoni S.O., Wood A.J., Kirch H.H., Kopečný D., et al. Aldehyde dehydrogenase (ALDH) superfamily in plants: Gene nomenclature and comparative genomics. Planta. 2013;237:189–210. doi: 10.1007/s00425-012-1749-0. PubMed DOI PMC
Riveros-Rosas H., González-Segura L., Julián-Sánchez A., Díaz-Sánchez Á.G., Muñoz-Clares R.A. Structural determinants of substrate specificity in aldehyde dehydrogenases. Chem. Biol. Interact. 2013;202:51–61. doi: 10.1016/j.cbi.2012.11.015. PubMed DOI
Vasiliou V., Bairoch A., Tipton K.F., Nebert D.W. Eukaryotic aldehyde dehydrogenase (ALDH) genes: Human polymorphisms, and recommended nomenclature based on divergent evolution and chromosomal mapping. Pharmacogenetics. 1999;9:421–434. PubMed
Jackson B., Brocker C., Thompson D.C., Black W., Vasiliou K., Nebert D.W., Vasilou V. Update on the aldehyde dehydrogenase gene (ALDH) superfamily. Hum. Genom. 2011;5:283–303. doi: 10.1186/1479-7364-5-4-283. PubMed DOI PMC
Riveros-Rosas H., Julián-Sánchez A., Moreno-Hagelsieb G., Muñoz-Clares R. Aldehyde dehydrogenase diversity in bacteria of the Pseudomonas genus. Chem. Biol. Interact. 2019;304:83–87. doi: 10.1016/j.cbi.2019.03.006. PubMed DOI
Ambroziak W., Kurys G., Pietruszko R. Aldehyde dehydrogenase (EC 1.2.1.3): Comparison of subcellular localization of the third isozyme that dehydrogenates γ-aminobutyraldehyde in rat, guinea pig and human liver. Comp. Biochem. Physiol. 1991;100B:321–327. doi: 10.1016/0305-0491(91)90382-N. PubMed DOI
Tylichová M., Kopečný D., Moréra S., Briozzo P., Lenobel R., Snégaroff J., Šebela M. Structural and functional characterization of plant aminoaldehyde dehydrogenase from Pisum sativum with a broad specificity for natural and synthetic aminoaldehydes. J. Mol. Biol. 2010;396:870–882. doi: 10.1016/j.jmb.2009.12.015. PubMed DOI
Shortall K., Djeghader A., Magner E., Soulimane T. Insights into aldehyde dehydrogenase enzymes: A structural perspective. Front. Mol. Biosci. 2021;8:659550. doi: 10.3389/fmolb.2021.659550. PubMed DOI PMC
Liu Z.J., Sun Y.J., Rose J., Chung Y.J., Hsiao C.D., Chang W.R., Kuo I., Perozich J., Lindahl R., Hempel J., et al. The first structure of an aldehyde dehydrogenase reveals novel interactions between NAD and the Rossmann fold. Nat. Struct. Biol. 1997;4:317–326. doi: 10.1038/nsb0497-317. PubMed DOI
Cushman J.C. Osmoregulation in plants: Implications for agriculture. Am. Zool. 2001;41:758–769. doi: 10.1093/icb/41.4.758. DOI
Zarei A., Trobacher C.P., Shelp B.J. Arabidopsis aldehyde dehydrogenase 10 family members confer salt tolerance through putrescine-derived 4-aminobutyrate (GABA) production. Sci. Rep. 2016;6:35115. doi: 10.1038/srep35115. PubMed DOI PMC
Končitíková R., Vigouroux A., Kopečná M., Šebela M., Moréra S., Kopečný D. Kinetic and structural analysis of human ALDH9A1. Biosci. Rep. 2019;39:BSR20190558. doi: 10.1042/BSR20190558. PubMed DOI PMC
Kopečný D., Tylichová M., Snégaroff J., Popelková H., Šebela M. Carboxylate and aromatic active-site residues are determinants of high-affinity binding of ω-aminoaldehydes to plant aminoaldehyde dehydrogenases. FEBS J. 2011;278:3130–3139. doi: 10.1111/j.1742-4658.2011.08239.x. PubMed DOI
Kopečný D., Končitíková R., Tylichová M., Vigouroux A., Moskalíková H., Soural M., Šebela M., Moréra S. Plant ALDH10 family: Identifying critical residues for substrate specificity and trapping a thiohemiacetal intermediate. J. Biol. Chem. 2013;95:889–902. doi: 10.1074/jbc.M112.443952. PubMed DOI PMC
Díaz-Sánchez Á.G., González-Segura L., Mújica-Jiménez C., Rudiño-Piñera E., Montiel C., Martínez-Castilla L.P., Muñoz-Clares R.A. Amino acid residues critical for the specificity for betaine aldehyde of the plant ALDH10 isoenzyme involved in the synthesis of glycine betaine. Plant Physiol. 2012;158:1570–1582. doi: 10.1104/pp.112.194514. PubMed DOI PMC
Sánchez-Linares I., Pérez-Sánchez H., Cecilia J.M., García J.M. High-throughput parallel blind virtual screening using BINDSURF. BMC Bioinform. 2012;13:S13. doi: 10.1186/1471-2105-13-S14-S13. PubMed DOI PMC
Calcabrini A., Arancia G., Marra M., Crateri P., Befani O., Martone A., Agostinelli E. Enzymatic oxidation products of spermine induce greater cytotoxic effects on human multidrug- resistant colon carcinoma cells (LoVo) than on their wild type counterparts. Int. J. Cancer. 2002;99:43–52. doi: 10.1002/ijc.10310. PubMed DOI
Agostinelli E., Tempera G., Viceconte N., Saccoccio S., Battaglia V., Grancara S., Toninello A., Stevanato R. Potential anticancer application of polyamine oxidation products formed by amine oxidase: A new therapeutic approach. Amino Acids. 2010;38:353–368. doi: 10.1007/s00726-009-0431-8. PubMed DOI
Agostinelli E., Dalla Vedova L., Belli F., Condello M., Arancia G., Seiler N. Sensitization of human colon adenocarcinoma cells (LoVo) to reactive oxygen species by a lysosomotropic compound. Int. J. Oncol. 2006;29:947–955. doi: 10.3892/ijo.29.4.947. PubMed DOI
Averill-Bates D.A., Chérif A., Agostinelli E., Tanel A., Fortier G. Anti-tumoral effect of native and immobilized bovine serum amine oxidase in a mouse melanoma model. Biochem. Pharmacol. 2005;69:1693–1704. doi: 10.1016/j.bcp.2005.02.025. PubMed DOI
Ohkubo S., Mancinelli R., Miglietta S., Cona A., Angelini R., Canettieri G., Spandidos D.A., Gaudio E., Agostinelli E. Maize polyamine oxidase in the presence of spermine/spermidine induces the apoptosis of LoVo human colon adenocarcinoma cells. Int. J. Oncol. 2019;54:2080–2094. doi: 10.3892/ijo.2019.4780. PubMed DOI PMC
Cona A., Federico R., Gramiccia M., Orsini S., Gradoni L. The amino aldehydes produced by spermine and spermidine oxidation with maize polyamine oxidase have anti-leishmanial effect. Biotechnol. Appl. Biochem. 1991;14:54–59. doi: 10.1111/j.1470-8744.1991.tb00165.x. PubMed DOI
Massa S., Spanò D., Pintus F., Medda R., Floris G. Oxidation of di- and polyamines: In vitro effect of amino aldehydes on the vitality of Leishmania promastigotes. Med. Chem. Res. 2010;19:77–83. doi: 10.1007/s00044-009-9173-0. DOI
Kashiwagi K., Igarashi K. Molecular characteristics of toxicity of acrolein produced from spermine. Biomolecules. 2023;13:298. doi: 10.3390/biom13020298. PubMed DOI PMC