N-carboxyacyl and N-α-aminoacyl derivatives of aminoaldehydes as shared substrates of plant aldehyde dehydrogenases 10 and 7

. 2024 Aug 29 ; 56 (1) : 52. [epub] 20240829

Jazyk angličtina Země Rakousko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39207552

Grantová podpora
IGA_PrF_2022_025 Univerzita Palackého v Olomouci

Odkazy

PubMed 39207552
PubMed Central PMC11362210
DOI 10.1007/s00726-024-03415-4
PII: 10.1007/s00726-024-03415-4
Knihovny.cz E-zdroje

Aldehyde dehydrogenases (ALDHs) represent a superfamily of enzymes, which oxidize aldehydes to the corresponding acids. Certain families, namely ALDH9 and ALDH10, are best active with ω-aminoaldehydes arising from the metabolism of polyamines such as 3-aminopropionaldehyde and 4-aminobutyraldehyde. Plant ALDH10s show broad specificity and accept many different aldehydes (aliphatic, aromatic and heterocyclic) as substrates. This work involved the above-mentioned aminoaldehydes acylated with dicarboxylic acids, phenylalanine, and tyrosine. The resulting products were then examined with native ALDH10 from pea and recombinant ALDH7s from pea and maize. This investigation aimed to find a common efficient substrate for the two plant ALDH families. One of the best natural substrates of ALDH7s is aminoadipic semialdehyde carrying a carboxylic group opposite the aldehyde group. The substrate properties of the new compounds were demonstrated by mass spectrometry of the reaction mixtures, spectrophotometric assays and molecular docking. The N-carboxyacyl derivatives were good substrates of pea ALDH10 but were only weakly oxidized by the two plant ALDH7s. The N-phenylalanyl and N-tyrosyl derivatives of 3-aminopropionaldehyde were good substrates of pea and maize ALDH7. Particularly the former compound was converted very efficiently (based on the kcat/Km ratio), but it was only weakly oxidized by pea ALDH10. Although no compound exhibited the same level of substrate properties for both ALDH families, we show that these enzymes may possess more common substrates than expected.

Zobrazit více v PubMed

Brocker C, Lassen N, Estey T, Pappa A, Cantore M, Orlova VV, Chavakis T, Kavanagh KL, Oppermann U, Vasiliou V (2010) Aldehyde dehydrogenase 7A1 (ALDH7A1) is a novel enzyme involved in cellular defense against hyperosmotic stress. J Biol Chem 285:18452–18463. 10.1074/jbc.M109.077925 PubMed PMC

Brocker C, Vasiliou M, Carpenter S, Carpenter C, Zhang Y, Wang X, Kotchoni SO, Wood AJ, Kirch HH, Kopečný D, Nebert DW, Vasiliou V (2013) Aldehyde dehydrogenase (ALDH) superfamily in plants: gene nomenclature and comparative genomics. Planta 237:189–210. 10.1007/s00425-012-1749-0 PubMed PMC

Cardona-Cardona YV, Regla I, Juárez-Díaz JA, Carrillo-Campos J, López-Ortiz M, Aguilera-Cruz A, Mújica-Jiménez C, Muñoz-Clares RA (2022) The critical role of the aldehyde dehydrogenase PauC in spermine, spermidine, and diaminopropane toxicity in Pseudomonas aeruginosa: Its possible use as a drug target. FEBS J 289:2685–2705. 10.1111/febs.16277 PubMed

Frömmel J, Soural M, Tylichová M, Kopečný D, Demo G, Wimmerová M, Šebela M (2012) Plant aminoaldehyde dehydrogenases oxidize a wide range of nitrogenous heterocyclic aldehydes. Amino Acids 43:1189–1202. 10.1007/s00726-011-1174-x PubMed

Frömmel J, Šebela M, Demo G, Lenobel R, Pospíšil T, Soural M, Kopečný D (2015) N-acyl-ω-aminoaldehydes are efficient substrates of plant aminoaldehyde dehydrogenases. Amino Acids 47:175–187. 10.1007/s00726-014-1853-5 PubMed

Frömmel J, Končitíková D, Kopečný D, Soural M, Šebela M (2019) Oxidation of imidazole- and pyrazole-derived aldehydes by plant aldehyde dehydrogenases from the family 2 and 10. Chem Biol Interact 304:194–201. 10.1016/j.cbi.2019.02.008 PubMed

Guo Z, Zhang Q, Zou H, Guo B, Ni J (2002) A method for the analysis of low-mass molecules by MALDI-TOF mass spectrometry. Anal Chem 74:1637–1641. 10.1021/ac010979m PubMed

Hou Q, Barthels D (2015) Comparative study of the aldehyde dehydrogenase (ALDH) gene superfamily in the glycophyte Arabidopsis thaliana and Eutrema halophytes. Ann Bot 115:465–479. 10.1093/aob/mcu152 PubMed PMC

Jacques F, Zhao Y, Kopečná M, Končitíková R, Kopečný D, Rippa S, Perrin Y (2020) Roles for ALDH10 enzymes in γ-butyrobetaine synthesis, seed development, germination, and salt tolerance in Arabidopsis. J Exp Bot 71:7088–7102. 10.1093/jxb/eraa394 PubMed

Jimenez-Lopez JC, Lopez-Valverde FJ, Robles-Bolivar P, Lima-Cabello E, Gachomo EW, Kotchoni SO (2016) Genome-wide identification and functional classification of tomato (Solanum lycopersicum) aldehyde dehydrogenase (ALDH) gene superfamily. PLoS ONE 11:e0164798. 10.1371/journal.pone.0164798 PubMed PMC

Končitíková R, Vigouroux A, Kopečná M, Andree T, Bartoš J, Šebela M, Moréra S, Kopečný D (2015) Role and structural characterization of plant aldehyde dehydrogenases from family 2 and family 7. Biochem J 468:109–123. 10.1042/BJ20150009 PubMed

Kopečný D, Tylichová M, Snégaroff J, Popelková H, Šebela M (2011) Carboxylate and aromatic active-site residues are determinants of high-affinity binding of ω-aminoaldehydes to plant aminoaldehyde dehydrogenases. FEBS J 278:3130–3139. 10.1111/j.1742-4658.2011.08239.x PubMed

Kopečný D, Končitíková R, Tylichová M, Vigouroux A, Moskalíková H, Soural M, Šebela M, Moréra S (2013) Plant ALDH10 family: identifying critical residues for substrate specificity and trapping a thiohemiacetal intermediate. J Biol Chem 288:9491–9507. 10.1074/jbc.M112.443952 PubMed PMC

Koppaka V, Thompson DC, Chen Y, Ellermann M, Nicolaou KC, Juvonen RO, Petersen D, Deitrich RA, Hurley TD, Vasiliou V (2012) Aldehyde dehydrogenase inhibitors: a comprehensive review of the pharmacology, mechanism of action, substrate specificity, and clinical application. Pharmacol Rev 64:520–539. 10.1124/pr.111.005538 PubMed PMC

Luo M, Tanner JJ (2015) Structural basis of substrate recognition by aldehyde dehydrogenase 7A1. Biochemistry 54:5513–5522. 10.1021/acs.biochem.5b00754 PubMed PMC

Mitsuya S, Yokota Y, Fujiwara T, Mori N, Takabe T (2009) OsBADH1 is possibly involved in acetaldehyde oxidation in rice plant peroxisomes. FEBS Lett 583:3625–3629. 10.1016/j.febslet.2009.10.039 PubMed

O’Brien PJ, Siraki AG, Shangari N (2005) Aldehyde sources, metabolism, molecular toxicity mechanisms, and possible effects on human health. Crit Rev Toxicol 35:609–662. 10.1080/10408440591002183 PubMed

Reumann S, Quan S, Aung K, Yang P, Manandhar-Shrestha K, Holbrook D, Linka N, Switzenberg R, Wilkerson CG, Weber APM, Olsen LJ, Hu J (2009) In-depth proteome analysis of Arabidopsis leaf peroxisomes combined with in vivo subcellular targeting verification indicates novel metabolic and regulatory functions of peroxisomes. Plant Physiol 150:125–143. 10.1104/pp.109.137703 PubMed PMC

Riveros-Rosas H, González-Segura L, Julián-Sánchez A, Díaz-Sánchez ÁG, Muñoz-Clares RA (2013) Structural determinants of substrate specificity in aldehyde dehydrogenases. Chem Biol Interact 202:51–61. 10.1016/j.cbi.2012.11.015 PubMed

Salvi D, Tavladoraki P (2020) The tree of life of polyamine oxidases. Sci Rep 10:17858. 10.1038/s41598-020-74708-3 PubMed PMC

Samanta I, Roy PC, Das E, Mishra S, Chowdhary G (2023) Plant peroxisomal polyamine oxidase: a ubiquitous enzyme involved in abiotic stress tolerance. Plants 12:652. 10.3390/plants12030652 PubMed PMC

Sánchez-Linares I, Pérez-Sánchez H, Cecilia JM, García JM (2012) High-throughput parallel blind virtual screening using BINDSURF. BMC Bioinform 13:S13. 10.1186/1471-2105-13-S14-S13 PubMed PMC

Schüttelkopf AW, van Aalten DMF (2004) PRODRG: a tool for high-throughput crystallography of protein-ligand complexes. Acta Crystallogr D 60:1355–1363. 10.1107/S0907444904011679 PubMed

Šebela M, Rašková M (2023) Polyamine-derived aminoaldehydes and acrolein: cytotoxicity, reactivity and analysis of induced protein modifications. Molecules 28:7429. 10.3390/molecules28217429 PubMed PMC

Šebela M, Brauner F, Radová A, Jacobsen S, Havliš J, Galuszka P, Peč P (2000) Characterisation of a homogeneous plant aminoaldehyde dehydrogenase. Biochim Biophys Acta Protein Struct Mol Enzymes 1480:329–341. 10.1016/S0167-4838(00)00086-8 PubMed

Šebela M, Luhová L, Brauner F, Galuszka P, Radová A, Peč P (2001) Light microscopic localisation of aminoaldehyde dehydrogenase activity in plant tissues using nitroblue tetrazolium-based staining method. Plant Physiol Biochem 39:831–839. 10.1016/S0981-9428(01)01304-3

Tang WK, Wong KB, Lam YM, Cha SS, Cheng CHK, Fong WP (2008) The crystal structure of seabream antiquitin reveals the structural basis of its substrate specificity. FEBS Lett 582:3090–3096. 10.1016/j.febslet.2008.07.059 PubMed

Tylichová M, Kopečný D, Moréra S, Briozzo P, Lenobel R, Snégaroff J, Šebela M (2010) Structural and functional characterization of plant aminoaldehyde dehydrogenase from Pisum sativum with a broad specificity for natural and synthetic aminoaldehydes. J Mol Biol 396:870–882. 10.1016/j.jmb.2009.12.015 PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...