Thinking outside the CaaX-box: an unusual reversible prenylation on ALDH9A1
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection
Typ dokumentu časopisecké články
Grantová podpora
T32 GM008347
NIGMS NIH HHS - United States
P30 CA077598
NCI NIH HHS - United States
T32 AG029796
NIA NIH HHS - United States
R35 GM141853
NIGMS NIH HHS - United States
T32 GM132029
NIGMS NIH HHS - United States
RF1 AG056976
NIA NIH HHS - United States
PubMed
37920391
PubMed Central
PMC10619140
DOI
10.1039/d3cb00089c
PII: d3cb00089c
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Protein lipidation is a post-translational modification that confers hydrophobicity on protein substrates to control their cellular localization, mediate protein trafficking, and regulate protein function. In particular, protein prenylation is a C-terminal modification on proteins bearing canonical motifs catalyzed by prenyltransferases. Prenylated proteins have been of interest due to their numerous associations with various diseases. Chemical proteomic approaches have been pursued over the last decade to define prenylated proteomes (prenylome) and probe their responses to perturbations in various cellular systems. Here, we describe the discovery of prenylation of a non-canonical prenylated protein, ALDH9A1, which lacks any apparent prenylation motif. This enzyme was initially identified through chemical proteomic profiling of prenylomes in various cell lines. Metabolic labeling with an isoprenoid probe using overexpressed ALDH9A1 revealed that this enzyme can be prenylated inside cells but does not respond to inhibition by prenyltransferase inhibitors. Site-directed mutagenesis of the key residues involved in ALDH9A1 activity indicates that the catalytic C288 bears the isoprenoid modification likely through an NAD+-dependent mechanism. Furthermore, the isoprenoid modification is also susceptible to hydrolysis, indicating a reversible modification. We hypothesize that this modification originates from endogenous farnesal or geranygeranial, the established degradation products of prenylated proteins and results in a thioester form that accumulates. This novel reversible prenoyl modification on ALDH9A1 expands the current paradigm of protein prenylation by illustrating a potentially new type of protein-lipid modification that may also serve as a novel mechanism for controlling enzyme function.
Department of Chemistry University of Minnesota Minneapolis MN 55455 USA
Department of Experimental Biology Faculty of Science Palacký University CZ 78371 Czech Republic
Department of Medicinal Chemistry University of Minnesota Minneapolis MN 55455 USA
Institute of Organic Chemistry Faculty of Chemistry Lodz University of Technology Łódź Poland
Zobrazit více v PubMed
Marshall C. J. Science. 1993;259:1865–1866. doi: 10.1126/science.8456312. PubMed DOI
Zhang F. L. Casey P. J. Annu. Rev. Biochem. 1996;65:241–269. doi: 10.1146/annurev.bi.65.070196.001325. PubMed DOI
Blanden M. J. Suazo K. F. Hildebrandt E. R. Hardgrove D. S. Patel M. Saunders W. P. Distefano M. D. Schmidt W. K. Hougland J. L. J. Biol. Chem. 2017;293:2770–2785. doi: 10.1074/jbc.M117.805770. PubMed DOI PMC
Ashok S. Hildebrandt E. R. Ruiz C. S. Hardgrove D. S. Coreno D. W. Schmidt W. K. Hougland J. L. Biochemistry. 2020;59:1149–1162. doi: 10.1021/acs.biochem.0c00081. PubMed DOI PMC
Schey G. L. Buttery P. H. Hildebrandt E. R. Novak S. X. Schmidt W. K. Hougland J. L. Distefano M. D. Int. J. Mol. Sci. 2021;22:12042. doi: 10.3390/ijms222112042. PubMed DOI PMC
Kinsella B. T. Maltese W. A. J. Biol. Chem. 1992;267:3940–3945. doi: 10.1016/S0021-9258(19)50616-0. PubMed DOI
Kuchay S. Wang H. Marzio A. Jain K. Homer H. Fehrenbacher N. Philips M. R. Zheng N. Pagano M. Nat. Struct. Mol. Biol. 2019;26:628–636. doi: 10.1038/s41594-019-0249-3. PubMed DOI PMC
Shirakawa R. Goto-Ito S. Goto K. Wakayama S. Kubo H. Sakata N. Trinh D. A. Yamagata A. Sato Y. Masumoto H. Cheng J. Fujimoto T. Fukai S. Horiuchi H. EMBO J. 2020;39:e104120. doi: 10.15252/embj.2019104120. PubMed DOI PMC
Tate E. W. Kalesh K. A. Lanyon-Hogg T. Storck E. M. Thinon E. Curr. Opin. Chem. Biol. 2015;24:48–57. doi: 10.1016/j.cbpa.2014.10.016. PubMed DOI PMC
Suazo K. F. Schey G. Schaber C. Odom John A. R. Distefano M. D. Mass Spectrom. Chem. Proteomics. 2019:317–347.
Storck E. M. Morales-Sanfrutos J. Serwa R. A. Panyain N. Lanyon-Hogg T. Tolmachova T. Ventimiglia L. N. Martin-Serrano J. Seabra M. C. Wojciak-Stothard B. Tate E. W. Nat. Chem. 2019;11:552–561. doi: 10.1038/s41557-019-0237-6. PubMed DOI PMC
Suazo K. F. Jeong A. Ahmadi M. Brown C. Qu W. Li L. Distefano M. D. Sci. Rep. 2021;11:4367. doi: 10.1038/s41598-021-83666-3. PubMed DOI PMC
Suazo K. F. Park K.-Y. Distefano M. D. Chem. Rev. 2021;121:7178–7248. doi: 10.1021/acs.chemrev.0c01108. PubMed DOI PMC
Qu W. Suazo K. F. Liu W. Cheng S. Jeong A. Hottman D. Yuan L.-L. Distefano M. D. Li L. Mol. Neurobiol. 2021;58:1128–1144. doi: 10.1007/s12035-020-02169-w. PubMed DOI PMC
Charron G. Li M. M. H. MacDonald M. R. Hang H. C. Proc. Natl. Acad. Sci. U. S. A. 2013;110:11085–11090. doi: 10.1073/pnas.1302564110. PubMed DOI PMC
Končitíková R. Vigouroux A. Kopečná M. Šebela M. Moréra S. Kopečný D. Biosci. Rep. 2019;39:BSR20190558. doi: 10.1042/BSR20190558. PubMed DOI PMC
Wyatt J. W. Korasick D. A. Qureshi I. A. Campbell A. C. Gates K. S. Tanner J. J. Arch. Biochem. Biophys. 2020;691:108477. doi: 10.1016/j.abb.2020.108477. PubMed DOI PMC
Kuzuguchi T. Morita Y. Sagami I. Sagami H. Ogura K. J. Biol. Chem. 1999;274:5888–5894. doi: 10.1074/jbc.274.9.5888. PubMed DOI
Palsuledesai C. C. Ochocki J. D. Kuhns M. M. Wang Y.-C. Warmka J. K. Chernick D. S. Wattenberg E. V. Li L. Arriaga E. A. Distefano M. D. ACS Chem. Biol. 2016;11:2820–2828. doi: 10.1021/acschembio.6b00421. PubMed DOI PMC
Lerner E. C. Qian Y. Hamilton A. D. Sebti S. M. J. Biol. Chem. 1995;270:26770–26773. doi: 10.1074/jbc.270.45.26770. PubMed DOI
Gisselberg J. E. Zhang L. Elias J. E. Yeh E. Mol. Cell. Proteomics. 2017;16:S54–S64. doi: 10.1074/mcp.M116.064550. PubMed DOI PMC
Kaźmierczak A. Kusy D. Niinivehmas S. P. Gmach J. Joachimiak Ł. Pentikäinen O. T. Gendaszewska-Darmach E. Błażewska K. M. J. Med. Chem. 2017;60:8781–8800. doi: 10.1021/acs.jmedchem.7b00811. PubMed DOI
Joachimiak Ł. Marchwicka A. Gendaszewska-Darmach E. Błażewska K. M. ChemMedChem. 2018;13:842–851. doi: 10.1002/cmdc.201700791. PubMed DOI
Coxon F. P. Joachimiak Ł. Najumudeen A. K. Breen G. Gmach J. Oetken-Lindholm C. Way R. Dunford J. E. Abankwa D. Błażewska K. M. Eur. J. Med. Chem. 2014;84:77–89. doi: 10.1016/j.ejmech.2014.06.062. PubMed DOI
Sophos N. A. Vasiliou V. Chem. – Biol. Interact. 2003;143–144:5–22. doi: 10.1016/S0009-2797(02)00163-1. PubMed DOI
Marchitti S. A. Brocker C. Stagos D. Vasiliou V. Expert Opin. Drug Metab. Toxicol. 2008;4:697–720. doi: 10.1517/17425255.4.6.697. PubMed DOI PMC
Koppaka V. Thompson D. C. Chen Y. Ellermann M. Nicolaou K. C. Juvonen R. O. Petersen D. Deitrich R. A. Hurley T. D. Vasiliou V. Pharmacol. Rev. 2012;64:520–539. doi: 10.1124/pr.111.005538. PubMed DOI PMC
Chern M. K. Pietruszko R. Biochem. Biophys. Res. Commun. 1995;213:561–568. doi: 10.1006/bbrc.1995.2168. PubMed DOI
Vaz F. M. Fouchier S. W. Ofman R. Sommer M. Wanders R. J. A. J. Biol. Chem. 2000;275:7390–7394. doi: 10.1074/jbc.275.10.7390. PubMed DOI
Kurys G. Ambroziak W. Pietruszko R. J. Biol. Chem. 1989;264:4715–4721. doi: 10.1016/S0021-9258(18)83802-9. PubMed DOI
Zhang Y. Wang M. Lin H. ACS Chem. Biol. 2020;15:28–32. doi: 10.1021/acschembio.9b00662. PubMed DOI PMC
Kitamura T. Takagi S. Naganuma T. Kihara A. Biochem. J. 2014;465:79–87. doi: 10.1042/BJ20140624. PubMed DOI
Fink A. L. Folding Des. 1998;3:R9–R23. doi: 10.1016/S1359-0278(98)00002-9. PubMed DOI
Bentinger M. Grünler J. Peterson E. Swiezewska E. Dallner G. Arch. Biochem. Biophys. 1998;353:191–198. doi: 10.1006/abbi.1998.0611. PubMed DOI
Tschantz W. R. Digits J. A. Pyun H.-J. Coates R. M. Casey P. J. J. Biol. Chem. 2001;276:2321–2324. doi: 10.1074/jbc.C000616200. PubMed DOI
Petenkova A. Auger S. A. Lamb J. Quellier D. Carter C. To O. T. Milosevic J. Barghout R. Kugadas A. Lu X. Geddes-McAlister J. Fichorova R. Sykes D. B. Distefano M. D. Gadjeva M. Nat. Commun. 2023;14:2761. doi: 10.1038/s41467-023-38447-z. PubMed DOI PMC
Hao P. Ren Y. Alpert A. J. Sze S. K. Mol. Cell. Proteomics. 2011;10:O111.009381. doi: 10.1074/mcp.O111.009381. PubMed DOI PMC
Ji Y. Leymarie N. Haeussler D. J. Bachschmid M. M. Costello C. E. Lin C. Anal. Chem. 2013;85:11952–11959. doi: 10.1021/ac402850s. PubMed DOI PMC
Mullen D. G. Kyro K. Hauser M. Gustavsson M. Veglia G. Becker J. M. Naider F. Distefano M. D. Bioorg. Med. Chem. 2011;19:490–497. doi: 10.1016/j.bmc.2010.11.006. PubMed DOI PMC
Tate E. W. J. Chem. Biol. 2008;1:17–26. doi: 10.1007/s12154-008-0002-6. PubMed DOI PMC
Tars K. Rumnieks J. Zeltins A. Kazaks A. Kotelovica S. Leonciks A. Sharipo J. Viksna A. Kuka J. Liepinsh E. Dambrova M. Biochem. Biophys. Res. Commun. 2010;398:634–639. doi: 10.1016/j.bbrc.2010.06.121. PubMed DOI
Morrison H. in Enzyme Active Sites and their Reaction Mechanisms, ed. H. Morrison, Academic Press, New York, 2021, pp.21–26
Morgan C. A. Parajuli B. Buchman C. D. Dria K. Hurley T. D. Chem. – Biol. Interact. 2015;234:18–28. doi: 10.1016/j.cbi.2014.12.008. PubMed DOI PMC
Kikonyogo A. Abriola D. P. Dryjanski M. Pietruszko R. Eur. J. Biochem. 1999;262:704–712. doi: 10.1046/j.1432-1327.1999.00415.x. PubMed DOI
Singh S. Brocker C. Koppaka V. Chen Y. Jackson B. C. Matsumoto A. Thompson D. C. Vasiliou V. Free Radicals Biol. Med. 2013;56:89–101. doi: 10.1016/j.freeradbiomed.2012.11.010. PubMed DOI PMC
Dinavahi S. S. Bazewicz C. G. Gowda R. Robertson G. P. Trends Pharmacol. Sci. 2019;40:774–789. doi: 10.1016/j.tips.2019.08.002. PubMed DOI
Johansson J. Fleetwood L. Jörnvall H. FEBS Lett. 1992;303:1–3. doi: 10.1016/0014-5793(92)80464-R. PubMed DOI
Ford B. Bateman L. A. Gutierrez-Palominos L. Park R. Nomura D. K. Cell Chem. Biol. 2017;24:133–140. doi: 10.1016/j.chembiol.2016.12.013. PubMed DOI
Whitby L. R. Obach R. S. Simon G. M. Hayward M. M. Cravatt B. F. ACS Chem. Biol. 2017;12:2040–2050. doi: 10.1021/acschembio.7b00346. PubMed DOI PMC
Huang Z. Ogasawara D. Seneviratne U. I. Cognetta 3rd A. B. Am Ende C. W. Nason D. M. Lapham K. Litchfield J. Johnson D. S. Cravatt B. F. ACS Chem. Biol. 2019;14:192–197. doi: 10.1021/acschembio.8b01097. PubMed DOI PMC
Almannai M. Alfadhel M. El-Hattab A. W. Molecules. 2019;24:3251. doi: 10.3390/molecules24183251. PubMed DOI PMC
Lin S. W. Chen J. C. Hsu L. C. Hsieh C.-L. Yoshida A. Genomics. 1996;34:376–380. doi: 10.1006/geno.1996.0300. PubMed DOI
Chew H. Solomon V. A. Fonteh A. N. Front. Physiol. 2020;11:598. doi: 10.3389/fphys.2020.00598. PubMed DOI PMC
Solas M. Puerta E. Ramirez J. M. Curr. Pharm. Des. 2015;21:4960–4971. doi: 10.2174/1381612821666150914121149. PubMed DOI
Jeong A. Auger S. A. Maity S. Fredriksen K. Zhong R. Li L. Distefano M. D. ACS Chem. Biol. 2022;17:2863–2876. doi: 10.1021/acschembio.2c00486. PubMed DOI PMC
Nunomura A. Perry G. Aliev G. Hirai K. Takeda A. Balraj E. K. Jones P. K. Ghanbari H. Wataya T. Shimohama S. Chiba S. Atwood C. S. Petersen R. B. Smith M. A. J. Neuropathol. Exp. Neurol. 2001;60:759–767. doi: 10.1093/jnen/60.8.759. PubMed DOI
Zhou Y. Prakash P. Liang H. Cho K.-J. Gorfe A. A. Hancock J. F. Cell. 2017;168:239–251.e16. doi: 10.1016/j.cell.2016.11.059. PubMed DOI PMC
Main A. Fuller W. FEBS J. 2022;289:861–882. doi: 10.1111/febs.15781. PubMed DOI
Suazo K. F. Hurben A. K. Liu K. Xu F. Thao P. Sudheer C. Li L. Distefano M. Curr. Protoc. Chem. Biol. 2018;10:e46. PubMed PMC
Morris G. M. Goodsell D. S. Halliday R. S. Huey R. Hart W. E. Belew R. K. Olson A. J. J. Comput. Chem. 1998;19:1639–1662. doi: 10.1002/(SICI)1096-987X(19981115)19:14<1639::AID-JCC10>3.0.CO;2-B. DOI
Trott O. Olson A. J. J. Comput. Chem. 2010;31:455–461. PubMed PMC
Dallakyan S. and Olson A. J., in Chemical Biology: Methods and Protocols, ed. J. E. Hempel, C. H. Williams and C. C. Hong, Springer, New York, 2015, pp.243–250
Kopečný D. Končitíková R. Tylichová M. Vigouroux A. Moskalíková H. Soural M. Šebela M. Moréra S. J. Biol. Chem. 2013;288:9491–9507. doi: 10.1074/jbc.M112.443952. PubMed DOI PMC