Changes in Galleria mellonella lysozyme level and activity during Pseudomonas aeruginosa infection
Language English Country United States Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
- MeSH
- Hemocytes enzymology MeSH
- Hemolymph enzymology MeSH
- Insect Proteins metabolism MeSH
- Larva enzymology microbiology MeSH
- Muramidase metabolism MeSH
- Moths enzymology microbiology MeSH
- Pseudomonas aeruginosa physiology MeSH
- Fat Body enzymology MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Insect Proteins MeSH
- Muramidase MeSH
The level of lysozyme in fat body, hemocytes and cell-free hemolymph from Galleria mellonella larvae infected with Pseudomonas aeruginosa was determined and evaluated. In the samples of fat body and hemocytes, an increase in lysozyme content was detected 1 d after infection and then a significant decrease was observed after a prolonged infection time. In the case of cell-free hemolymph, an increase in the lysozyme level was noticeable during the first 30 h post injection and stayed at a similar level for 42 h. The smaller decrease of the lysozyme level after 42 h might be associated with the development of bacteremia of P. aeruginosa in insects. In addition, the gradual increase in the content of lysozyme correlated with the increase of its activity in the hemolymph of the infected larvae as a response to injection with P. aeruginosa. The G. mellonella lysozyme appeared to be insensitive to extracellular proteinases produced in vivo by P. aeruginosa.
See more in PubMed
J Biol Chem. 1998 Jul 3;273(27):16792-7 PubMed
J Bacteriol. 2000 Jul;182(13):3843-5 PubMed
Nature. 1970 Aug 15;227(5259):680-5 PubMed
Med Mal Infect. 2006 Feb;36(2):78-91 PubMed
Insect Biochem Mol Biol. 2006 Jul;36(7):547-60 PubMed
Am J Physiol Lung Cell Mol Physiol. 2005 Feb;288(2):L409-18 PubMed
Dev Comp Immunol. 1985 Summer;9(3):559-68 PubMed
Biochem Biophys Res Commun. 1996 Mar 27;220(3):502-8 PubMed
FEMS Microbiol Rev. 2004 Feb;28(1):101-12 PubMed
Microbes Infect. 2000 Jul;2(9):1051-60 PubMed
J Bacteriol. 2001 Dec;183(24):7126-34 PubMed
Comp Biochem Physiol B. 1973 Jul 15;45(313):669-81 PubMed
Immunobiology. 2006;211(4):213-36 PubMed
EXS. 1996;75:87-102 PubMed
Anal Biochem. 2001 Mar;290(2):330-7 PubMed
J Invertebr Pathol. 2008 Jan;97(1):14-9 PubMed
Folia Microbiol (Praha). 2006;51(6):633-8 PubMed
Acta Biol Med Ger. 1968;21(1):85-95 PubMed
Dev Comp Immunol. 2002 Oct;26(8):707-13 PubMed
Anal Biochem. 1976 May 7;72:248-54 PubMed
Dev Comp Immunol. 1999 Jun-Jul;23(4-5):329-44 PubMed
Insect Biochem Mol Biol. 2002 Oct;32(10):1295-309 PubMed
Mol Cell Biochem. 1984 Sep;63(2):165-89 PubMed
Infect Immun. 1974 Jul;10(1):136-45 PubMed
Dev Comp Immunol. 1995 Sep-Oct;19(5):357-63 PubMed
Invest Ophthalmol Vis Sci. 1998 Mar;39(3):662-5 PubMed
FEMS Microbiol Lett. 2006 Oct;263(1):1-9 PubMed
Biochimie. 1990 Feb-Mar;72(2-3):147-56 PubMed
Trends Immunol. 2001 Jun;22(6):285-8 PubMed
Infect Immun. 2003 May;71(5):2404-13 PubMed
Biochem Biophys Res Commun. 2005 Feb 18;327(3):820-7 PubMed
J Biol Chem. 2003 Jan 24;278(4):2549-53 PubMed
Curr Opin Immunol. 1996 Feb;8(1):8-13 PubMed
FEMS Microbiol Lett. 2005 Feb 15;243(2):331-7 PubMed