Assembly of the cnidarian camera-type eye from vertebrate-like components
Language English Country United States Media print-electronic
Document type Journal Article, Research Support, N.I.H., Intramural, Research Support, Non-U.S. Gov't
Grant support
Intramural NIH HHS - United States
PubMed
18577593
PubMed Central
PMC2449352
DOI
10.1073/pnas.0800388105
PII: 0800388105
Knihovny.cz E-resources
- MeSH
- Models, Biological MeSH
- Chlorocebus aethiops MeSH
- Cilia metabolism ultrastructure MeSH
- COS Cells MeSH
- Cubozoa growth & development MeSH
- Photoreceptor Cells, Invertebrate cytology metabolism ultrastructure MeSH
- Crystallins metabolism MeSH
- Melanins metabolism MeSH
- RNA, Messenger MeSH
- Molecular Sequence Data MeSH
- Vertebrates growth & development MeSH
- Eye cytology growth & development ultrastructure MeSH
- Lens, Crystalline metabolism MeSH
- Pigmentation MeSH
- Gene Expression Regulation MeSH
- Sequence Homology, Nucleic Acid MeSH
- Microphthalmia-Associated Transcription Factor genetics metabolism MeSH
- Rod Opsins metabolism MeSH
- Vision, Ocular genetics MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, N.I.H., Intramural MeSH
- Names of Substances
- Crystallins MeSH
- Melanins MeSH
- RNA, Messenger MeSH
- Microphthalmia-Associated Transcription Factor MeSH
- Rod Opsins MeSH
Animal eyes are morphologically diverse. Their assembly, however, always relies on the same basic principle, i.e., photoreceptors located in the vicinity of dark shielding pigment. Cnidaria as the likely sister group to the Bilateria are the earliest branching phylum with a well developed visual system. Here, we show that camera-type eyes of the cubozoan jellyfish, Tripedalia cystophora, use genetic building blocks typical of vertebrate eyes, namely, a ciliary phototransduction cascade and melanogenic pathway. Our findings indicative of parallelism provide an insight into eye evolution. Combined, the available data favor the possibility that vertebrate and cubozoan eyes arose by independent recruitment of orthologous genes during evolution.
See more in PubMed
Fernald RD. Casting a genetic light on the evolution of eyes. Science. 2006;313:1914–1918. PubMed
Arendt D, Wittbrodt J. Reconstructing the eyes of Urbilateria. Philos Trans R Soc London Ser B. 2001;356:1545–1563. PubMed PMC
Arendt D. Evolution of eyes and photoreceptor cell types. Int J Dev Biol. 2003;47:563–571. PubMed
Viscontini M, Hummel W, Fischer A. Isolation of pterin dimers from the eyes of Platynereis dumerilii (German) Helv Chim Acta. 1970;53:1207–1209.
Shoup JR. The development of pigment granules in the eyes of wild-type and mutant Drosophila melanogaster. J Cell Biol. 1966;29:223–249. PubMed PMC
Hase S, et al. Characterization of the pigment produced by the planarian, Dugesia ryukyuensis. Pigment Cell Res. 2006;19:248–249. PubMed
Conant FS. Notes on the Cubomedusae. Johns Hopkins Univ Circ. 1897;132:8–10.
Pearse JS, Pearse VB. Vision of cubomedusan jellyfishes. Science. 1978;199:458. PubMed
Yamasu T, Yoshida M. Fine structure of complex ocelli of a cubomedusan, Tamoya bursaria. Haeckel Cell Tissue Res. 1976;170:325–339. PubMed
Garm A, O'Connor M, Parkefelt L, Nilsson DE. Visually guided obstacle avoidance in the box jellyfish Tripedalia cystophora and Chiropsella bronzie. J Exp Biol. 2007;210:3616–3623. PubMed
Nilsson DE, Gislen L, Coates MM, Skogh C, Garm A. Advanced optics in a jellyfish eye. Nature. 2005;435:201–205. PubMed
Terakita A. The opsins. Genome Biol. 2005;6:213. PubMed PMC
Arendt D, Tessmar-Raible K, Snyman H, Dorresteijn AW, Wittbrodt J. Ciliary photoreceptors with a vertebrate-type opsin in an invertebrate brain. Science. 2004;306:869–871. PubMed
Raible F, et al. Opsins and clusters of sensory G protein-coupled receptors in the sea urchin genome. Dev Biol. 2006;300:461–475. PubMed
Marin EP, et al. The amino terminus of the fourth cytoplasmic loop of rhodopsin modulates rhodopsin-transducin interaction. J Biol Chem. 2000;275:1930–1936. PubMed
Coates MM, Garm A, Theobald JC, Thompson SH, Nilsson DE. The spectral sensitivity of the lens eyes of a box jellyfish, Tripedalia cystophora (Conant) J Exp Biol. 2006;209:3758–3765. PubMed
Arnheiter H. Evolutionary biology: Eyes viewed from the skin. Nature. 1998;391:632–633. PubMed
Oetting WS, Garrett SS, Brott M, King RA. P gene mutations associated with oculocutaneous albinism type II (OCA2) Hum Mutat. 2005;25:323. PubMed
Rinchik EM, et al. A gene for the mouse pink-eyed dilution locus and for human type II oculocutaneous albinism. Nature. 1993;361:72–76. PubMed
Fukamachi S, et al. Conserved function of medaka pink-eyed dilution in melanin synthesis and its divergent transcriptional regulation in gonads among vertebrates. Genetics. 2004;168:1519–1527. PubMed PMC
Protas ME, et al. Genetic analysis of cavefish reveals molecular convergence in the evolution of albinism. Nat Genet. 2006;38:107–111. PubMed
Hodgkinson CA, et al. Mutations at the mouse microphthalmia locus are associated with defects in a gene encoding a novel basic-helix–loop–helix-zipper protein. Cell. 1993;74:395–404. PubMed
Nguyen M, Arnheiter H. Signaling and transcriptional regulation in early mammalian eye development: A link between FGF and MITF. Development. 2000;127:3581–3591. PubMed
Opdecamp K, et al. Melanocyte development in vivo and in neural crest cell cultures: Crucial dependence on the Mitf basic helix–loop–helix zipper transcription factor. Development. 1997;124:2377–2386. PubMed
Goding CR. Mitf from neural crest to melanoma: Signal transduction and transcription in the melanocyte lineage. Genes Dev. 2000;14:1712–1728. PubMed
Piatigorsky J, Horwitz J, Norman BL. J1-crystallins of the cubomedusan jellyfish lens constitute a novel family encoded in at least three intronless genes. J Biol Chem. 1993;268:11894–11901. PubMed
Plachetzki DC, Degnan BM, Oakley TH. The origins of novel protein interactions during animal opsin evolution. PLoS ONE. 2007;2:e1054. PubMed PMC
Gehring WJ, Ikeo K. Pax 6: Mastering eye morphogenesis and eye evolution. Trends Genet. 1999;15:371–377. PubMed
Nilsson DE, Pelger S. A pessimistic estimate of the time required for an eye to evolve. Proc Biol Sci. 1994;256:53–58. PubMed
Kozmik Z, et al. Role of Pax genes in eye evolution: A cnidarian PaxB gene uniting Pax2 and Pax6 functions. Dev Cell. 2003;5:773–785. PubMed
Hill RE, et al. Mouse small eye results from mutations in a paired-like homeobox-containing gene. Nature. 1991;354:522–525. PubMed
Quiring R, Walldorf U, Kloter U, Gehring WJ. Homology of the eyeless gene of Drosophila to the small eye gene in mice and Aniridia in humans. Science. 1994;265:785–789. PubMed
Halder G, Callaerts P, Gehring WJ. Induction of ectopic eyes by targeted expression of the eyeless gene in Drosophila. Science. 1995;267:1788–1792. PubMed
Gehring WJ. Historical perspective on the development and evolution of eyes and photoreceptors. Int J Dev Biol. 2004;48:707–717. PubMed
Silver SJ, Rebay I. Signaling circuitries in development: Insights from the retinal determination gene network. Development. 2005;132:3–13. PubMed
Fernald RD. Eyes: Variety, development, and evolution. Brain Behav Evol. 2004;64:141–147. PubMed
Fernald RD. Evolving eyes. Int J Dev Biol. 2004;48:701–705. PubMed
Salvini-Plawen LV, Mayr E. On the evolution of photoreceptors and eyes. Evol Biol. 1977;10:207–263.
Kortschak RD, Samuel G, Saint R, Miller DJ. EST analysis of the cnidarian Acropora millepora reveals extensive gene loss and rapid sequence divergence in the model invertebrates. Curr Biol. 2003;13:2190–2195. PubMed
Putnam NH, et al. Sea anemone genome reveals ancestral eumetazoan gene repertoire and genomic organization. Science. 2007;317:86–94. PubMed
Piatigorsky J. Gene Sharing and Evolution: The Diversity of Protein Functions. Cambridge, MA: Harvard Univ Press; 2007.
Cvekl A, Yang Y, Chauhan BK, Cveklova K. Regulation of gene expression by Pax6 in ocular cells: A case of tissue-preferred expression of crystallins in lens. Int J Dev Biol. 2004;48:829–844. PubMed PMC
Kozmik Z, et al. Cubozoan crystallins: Evidence for convergent evolution of Pax regulatory sequences. Evolution Dev. 2008;10:52–61. PubMed
Eakin RM, Westfall JA. Further observation on the fine structure of some invertebrate eyes. Z Zellforsch Mikrosk Anat. 1964;62:310–332. PubMed
Cubozoan genome illuminates functional diversification of opsins and photoreceptor evolution
Eye evolution: common use and independent recruitment of genetic components
GENBANK
EU310498, EU310499, EU310500, EU310501, EU310502, EU310503