Beyond timing and step counting in 360° turning-in-place assessment: a scoping review
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, scoping review
Grantová podpora
LX22NPO5107
Ministerstvo Školství, Mládeže a Tělovýchovy
NU20-04-00327
Ministerstvo Zdravotnictví Ceské Republiky
PubMed
38297359
PubMed Central
PMC10832107
DOI
10.1186/s12938-024-01208-0
PII: 10.1186/s12938-024-01208-0
Knihovny.cz E-zdroje
- Klíčová slova
- Balance, Camera system, Inertial measurement unit, Wearable sensor,
- MeSH
- bérec MeSH
- cévní mozková příhoda * MeSH
- chůze (způsob) MeSH
- lidé středního věku MeSH
- lidé MeSH
- Parkinsonova nemoc * MeSH
- pohyb MeSH
- senioři MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- senioři MeSH
- Publikační typ
- časopisecké články MeSH
- scoping review MeSH
BACKGROUND: Turning in place is a challenging motor task and is used as a brief assessment test of lower limb function and dynamic balance. This review aims to examine how research of instrumented analysis of turning in place is implemented. In addition to reporting the studied population, we covered acquisition systems, turn detection methods, quantitative parameters, and how these parameters are computed. METHODS: Following the development of a rigorous search strategy, the Web of Science and Scopus were systematically searched for studies involving the use of turning-in-place. From the selected articles, the study population, types of instruments used, turn detection method, and how the turning-in-place characteristics were calculated. RESULTS: Twenty-one papers met the inclusion criteria. The subject groups involved in the reviewed studies included young, middle-aged, and older adults, stroke, multiple sclerosis and Parkinson's disease patients. Inertial measurement units (16 studies) and motion camera systems (5 studies) were employed for gathering measurement data, force platforms were rarely used (2 studies). Two studies used commercial software for turn detection, six studies referenced previously published algorithms, two studies developed a custom detector, and eight studies did not provide any details about the turn detection method. The most frequently used parameters were mean angular velocity (14 cases, 7 studies), turn duration (13 cases, 13 studies), peak angular velocity (8 cases, 8 studies), jerkiness (6 cases, 5 studies) and freezing-of-gait ratios (5 cases, 5 studies). Angular velocities were derived from sensors placed on the lower back (7 cases, 4 studies), trunk (4 cases, 2 studies), and shank (2 cases, 1 study). The rest (9 cases, 8 studies) did not report sensor placement. Calculation of the freezing-of-gait ratio was based on the acceleration of the lower limbs in all cases. Jerkiness computation employed acceleration in the medio-lateral (4 cases) and antero-posterior (1 case) direction. One study did not reported any details about jerkiness computation. CONCLUSION: This review identified the capabilities of turning-in-place assessment in identifying movement differences between the various subject groups. The results, based on data acquired by inertial measurement units across studies, are comparable. A more in-depth analysis of tests developed for gait, which has been adopted in turning-in-place, is needed to examine their validity and accuracy.
Zobrazit více v PubMed
Glaister BC, Bernatz GC, Klute GK, Orendurff MS. Video task analysis of turning during activities of daily living. Gait Posture. 2007;25:289–294. doi: 10.1016/j.gaitpost.2006.04.003. PubMed DOI
Patla AE, Adkin A, Ballard T. Online steering: coordination and control of body center of mass, head and body reorientation. Exp Brain Res. 1999;129:0629–634. doi: 10.1007/s002210050932. PubMed DOI
Thigpen MT, Light KE, Creel GL, Flynn SM. Turning difficulty characteristics of adults aged 65 years or older. Phys Ther. 2000;80:1174–1187. doi: 10.1093/ptj/80.12.1174. PubMed DOI
Crenna P, Carpinella I, Rabuffetti M, Calabrese E, Mazzoleni P, Nemni R, et al. The association between impaired turning and normal straight walking in Parkinson’s disease. Gait Posture. 2007;26:172–178. doi: 10.1016/j.gaitpost.2007.04.010. PubMed DOI
Hollands KL, van Vliet P, Zietz D, Wing A, Wright C, Hollands MA. Stroke-related differences in axial body segment coordination during preplanned and reactive changes in walking direction. Exp Brain Res. 2010;202:591–604. doi: 10.1007/s00221-010-2162-1. PubMed DOI
Patla AE, Frank JS, Winter DA. Balance control in the elderly: implications for clinical assessment and rehabilitation. Can J Public Health. 1992;83(Suppl 2):S29–33. PubMed
Aizen E, Dranker N, Swartzman R, Michalak R. Risk factors and characteristics of falls resulting in hip fracture in the elderly. Isr Med Assoc J. 2003;5:333–336. PubMed
Cumming RG, Klineberg RJ. Fall frequency and characteristics and the risk of hip fractures. J Am Geriatr Soc. 1994;42:774–778. doi: 10.1111/j.1532-5415.1994.tb06540.x. PubMed DOI
Stack EL, Ashburn AM, Jupp KE. Strategies used by people with Parkinson’s disease who report difficulty turning. Parkinsonism Relat Disord. 2006;12:87–92. doi: 10.1016/j.parkreldis.2005.08.008. PubMed DOI
Hollands MA, Ziavra NV, Bronstein AM. A new paradigm to investigate the roles of head and eye movements in the coordination of whole-body movements. Exp Brain Res. 2004;154:261–266. doi: 10.1007/s00221-003-1718-8. PubMed DOI
Nnodim JO, Yung RL. Balance and its clinical assessment in older adults—a review. J Geriatr Med Gerontol. 2015 doi: 10.23937/2469-5858/1510003. PubMed DOI PMC
Tinetti ME. Performance-oriented assessment of mobility problems in elderly patients. J Am Geriatr Soc. 1986;34:119–126. doi: 10.1111/j.1532-5415.1986.tb05480.x. PubMed DOI
Berg K, Wood-Dauphine S, Williams JI, Gayton D. Measuring balance in the elderly: preliminary development of an instrument. Physiother Can. 1989;41:304–311. doi: 10.3138/ptc.41.6.304. DOI
Abdollahi M, Kuber PM, Pierce M, Cristales K, Dombovy M, LaLonde J, et al. Motor-Cognitive Dual-Task Paradigm Affects Timed Up & Go (TUG) Test Outcomes in Stroke Survivors. 2023 11th International IEEE/EMBS Conference on Neural Engineering (NER) [Internet]. Baltimore, MD, USA: IEEE; 2023 [cited 2023 Dec 31]. p. 1–4. https://ieeexplore.ieee.org/document/10123749/
Barry E, Galvin R, Keogh C, Horgan F, Fahey T. Is the Timed Up and Go test a useful predictor of risk of falls in community dwelling older adults: a systematic review and meta- analysis. BMC Geriatr. 2014;14:14. doi: 10.1186/1471-2318-14-14. PubMed DOI PMC
Leigh Hollands K, Hollands MA, Zietz D, Miles Wing A, Wright C, Van Vliet P. Kinematics of turning 180° during the timed up and go in stroke survivors with and without falls history. Neurorehabil Neural Repair. 2010;24:358–367. doi: 10.1177/1545968309348508. PubMed DOI
Mathias S, Nayak SL, Isaacs U. Balance in elderly patients the get-up and go” test. Archiv Phys Med Rehabil. 1986;34:119–126. PubMed
Podsiadlo D, Richardson S. The timed “Up & Go”: a test of basic functional mobility for frail elderly persons. J Am Geriatr Soc. 1991;39:142–148. doi: 10.1111/j.1532-5415.1991.tb01616.x. PubMed DOI
Kobayashi M, Takahashi K, Sato M, Usuda S. Association of performance of standing turns with physical impairments and walking ability in patients with hemiparetic stroke. J Phys Ther Sci. 2015;27:75–78. doi: 10.1589/jpts.27.75. PubMed DOI PMC
Spain RI, George RJ, Salarian A, Mancini M, Wagner JM, Horak FB, et al. Body-worn motion sensors detect balance and gait deficits in people with multiple sclerosis who have normal walking speed. Gait Posture. 2012;35:573–578. doi: 10.1016/j.gaitpost.2011.11.026. PubMed DOI PMC
Micó-Amigo ME, Kingma I, Heinzel S, Nussbaum S, Heger T, Lummel RCV, et al. Dual vs single tasking during circular walking: what better reflects progression in Parkinson’s Disease? Front Neurol. 2019;2019(10):372. doi: 10.3389/fneur.2019.00372. PubMed DOI PMC
Swanson CW, Fling BW. Links between neuroanatomy and neurophysiology with turning performance in people with multiple sclerosis. Sensors. 2023;23:7629. doi: 10.3390/s23177629. PubMed DOI PMC
Lipsitz LA, Jonsson PV, Kelley MM, Koestner JS. Causes and correlates of recurrent falls in ambulatory frail elderly. J Gerontol. 1991;46:M114–M122. doi: 10.1093/geronj/46.4.M114. PubMed DOI
Gill TM, Williams CS, Tinetti ME. Assessing risk for the onset of functional dependence among older adults: the role of physical performance. J Am Geriatr Soc. 1995;43:603–609. doi: 10.1111/j.1532-5415.1995.tb07192.x. PubMed DOI
Soke F, Guclu-Gunduz A, Ozkul C, Cekim K, Irkec C, Gonenli KB. Reliability and validity of the timed 360\circ$ turn test in people with multiple sclerosis. Physiother Theory Pract. 2021;37:736–747. doi: 10.1080/09593985.2019.1641867. PubMed DOI
Hong M, Perlmutter JS, Earhart GM. A kinematic and electromyographic analysis of turning in people with Parkinson disease. Neurorehabil Neural Repair. 2009;23:166–176. doi: 10.1177/1545968308320639. PubMed DOI PMC
Anastasopoulos D, Ziavra N, Savvidou E, Bain P, Bronstein AM. Altered eye-to-foot coordination in standing parkinsonian patients during large gaze and whole-body reorientations. Mov Disord. 2011;26:2201–2211. doi: 10.1002/mds.23798. PubMed DOI
Canning CG, Ada L, Johnson JJ, McWhirter S. Walking capacity in mild to moderate Parkinson’s Disease. Arch Phys Med Rehabil. 2006;87:371–375. doi: 10.1016/j.apmr.2005.11.021. PubMed DOI
Schenkman M, Cutson TM, Kuchibhatla M, Chandler J, Pieper C. Reliability of impairment and physical performance measures for persons with Parkinson’s disease. Phys Ther. 1997;77:19–27. doi: 10.1093/ptj/77.1.19. PubMed DOI
Vance DE, Ross LA, Crowe MG, Wadley VG, Edwards JD, Ball KK. The relationship of memory, reasoning, and speed of processing on falling among older adults. Phys Occupational Ther Geriatr. 2009;27:212–228. doi: 10.1080/02703180802377123. PubMed DOI PMC
Khobkhun F, Hollands K, Hollands M, Ajjimaporn A. Effectiveness of exercise-based rehabilitation for the treatment of axial rigidity in people with Parkinson’s disease: a scoping review. Phys Ther Rev. 2020;25:283–291. doi: 10.1080/10833196.2020.1816127. DOI
Schenkman M, Cutson TM, Kuchibhatla M, Chandler J, Pieper CF, Ray L, et al. Exercise to improve spinal flexibility and function for people with Parkinson’s disease: a randomized, controlled trial. J Am Geriatr Soc. 1998;46:1207–1216. doi: 10.1111/j.1532-5415.1998.tb04535.x. PubMed DOI
Schenkman M, Morey M, Kuchibhatla M. Spinal flexibility and balance control among community-dwelling adults with and without Parkinson’s disease. J Gerontol A Biol Sci Med Sci. 2000;55:M441–M445. doi: 10.1093/gerona/55.8.M441. PubMed DOI
Wolf SL, O’Grady M, Easley KA, Guo Y, Kressig RW, Kutner M. The influence of intense Tai Chi training on physical performance and hemodynamic outcomes in transitionally frail, older adults. J Gerontol A Biol Sci Med Sci. 2006;61:184–189. doi: 10.1093/gerona/61.2.184. PubMed DOI
Bryant MS, Workman CD, Hou J-GG, Henson HK, York MK. Acute and long-term effects of multidirectional treadmill training on gait and balance in Parkinson disease. PM R. 2016;8:1151–1158. doi: 10.1016/j.pmrj.2016.05.001. PubMed DOI
Sprague BN, Phillips CB, Ross LA. Age-varying relationships between physical function and cognition in older adulthood. J Gerontol Series B. 2019;74:772–784. doi: 10.1093/geronb/gbx126. PubMed DOI PMC
Cheng Y-Y, Weng S-C, Chang S-T, Tan S-H, Tang Y-J. Evaluating functional independence in older adults using subscales of the Berg balance scale. J Clin Gerontol Geriatrics. 2014;5:111–116. doi: 10.1016/j.jcgg.2014.05.001. DOI
Ackerman ML, Edwards JD, Ross LA, Ball KK, Lunsman M. Examination of cognitive and instrumental functional performance as indicators for driving cessation risk across 3 years. Gerontologist. 2008;48:802–810. doi: 10.1093/geront/48.6.802. PubMed DOI PMC
Snijders AH, Nijkrake MJ, Bakker M, Munneke M, Wind C, Bloem BR. Clinimetrics of freezing of gait. Mov Disord. 2008;23(Suppl 2):S468–S474. doi: 10.1002/mds.22144. PubMed DOI
Mancini M, Smulders K, Cohen RG, Horak FB, Giladi N, Nutt JG. The clinical significance of freezing while turning in Parkinson’s disease. Neuroscience. 2017;343:222–228. doi: 10.1016/j.neuroscience.2016.11.045. PubMed DOI PMC
Shiu CH, Ng SS, Kwong PW, Liu T-W, Tam EW, Fong SS. Timed 360\circ$Turn test for assessing people with chronic stroke. Arch Phys Med Rehabil. 2016;97:536–544. doi: 10.1016/j.apmr.2015.11.010. PubMed DOI
Soke F, Guclu-Gunduz A, Ozkan T, Ozkul C, Gulsen C, Kocer B. Reliability and validity of the timed 360\circ$ turn test in people with Parkinson’s disease. Eur Geriatr Med. 2020;11:417–426. doi: 10.1007/s41999-019-00285-y. PubMed DOI
Tager IB, Swanson A, Satariano WA. Reliability of physical performance and self-reported functional measures in an older population. J Gerontol A Biol Sci Med Sci. 1998;53:M295–300. doi: 10.1093/gerona/53A.4.M295. PubMed DOI
Son M, Youm C, Cheon S, Kim J, Lee M, Kim Y, et al. Evaluation of the turning characteristics according to the severity of Parkinson disease during the timed up and go test. Aging Clin Exp Res. 2017;29:1191–1199. doi: 10.1007/s40520-016-0719-y. PubMed DOI
Colyer SL, Evans M, Cosker DP, Salo AIT. A review of the evolution of vision-based motion analysis and the integration of advanced computer vision methods towards developing a markerless system. Sports Med—Open. 2018;4:24. doi: 10.1186/s40798-018-0139-y. PubMed DOI PMC
Schroeder S, Jaeger S, Schwer J, Seitz AM, Hamann I, Werner M, et al. Accuracy measurement of different marker based motion analysis systems for biomechanical applications: a round robin study Riveiro Rodríguez. PLoS ONE. 2022;17:e0271349. doi: 10.1371/journal.pone.0271349. PubMed DOI PMC
Cuesta-Vargas AI, Galán-Mercant A, Williams JM. The use of inertial sensors system for human motion analysis. Phys Ther Rev. 2010;15:462–473. doi: 10.1179/1743288X11Y.0000000006. PubMed DOI PMC
Li M, Li P, Tian S, Tang K, Chen X. Estimation of temporal gait parameters using a human body electrostatic sensing-based method. Sensors. 2018;18:1737. doi: 10.3390/s18061737. PubMed DOI PMC
Horak F, King L, Mancini M. Role of body-worn movement monitor technology for balance and gait rehabilitation. Phys Ther. 2015;95:461–470. doi: 10.2522/ptj.20140253. PubMed DOI PMC
McGough EL, Gries M, Teri L, Kelly VE. Validity of instrumented 360° turn test in older adults with cognitive impairment. Phys Occupational Ther Geriat. 2020;38:170–184. doi: 10.1080/02703181.2019.1710319. PubMed DOI PMC
Chou P-Y, Lee S-C. Turning deficits in people with Parkinson’s disease. Tzu Chi Med J. 2013;25:200–202. doi: 10.1016/j.tcmj.2013.06.003. DOI
Godi M, Giardini M, Schieppati M. Walking along curved trajectories changes with age and Parkinson’s disease hints to rehabilitation. Front Neurol. 2019 doi: 10.3389/fneur.2019.00532. PubMed DOI PMC
Hulbert S, Ashburn A, Robert L, Verheyden G. A narrative review of turning deficits in people with Parkinson’s disease. Disabil Rehabil. 2015;37:1382–1389. doi: 10.3109/09638288.2014.961661. PubMed DOI
Spildooren J, Vinken C, Van Baekel L, Nieuwboer A. Turning problems and freezing of gait in Parkinson’s disease: a systematic review and meta-analysis. Disabil Rehabil. 2019;41:2994–3004. doi: 10.1080/09638288.2018.1483429. PubMed DOI
Manaf H, Justine M, Omar M, Md Isa KA, Salleh Z. Turning ability in stroke survivors: a review of literature. ISRN Rehabil. 2012;2012:284924. doi: 10.5402/2012/284924. DOI
Chapter 11: Scoping reviews. JBI Manual for evidence synthesis. JBI. https://jbi-global-wiki.refined.site/space/MANUAL/4687342/Chapter+11%3A+Scoping+reviews
Vitorio R, Stuart S, Giritharan A, Quinn J, Nutt JG, Mancini M. Changes in prefrontal cortical activity and turning in response to dopaminergic and cholinergic therapy in Parkinson’s disease: a randomized cross-over trial. Parkinsonism Relat Disord. 2021;86:10–14. doi: 10.1016/j.parkreldis.2021.03.014. PubMed DOI
Earhart GM, Stevens ES, Perlmutter JS, Hong M. Perception of active and passive turning in Parkinson disease. Neurorehabil Neural Repair. 2007;21:116–122. doi: 10.1177/1545968306290674. PubMed DOI
Imbalzano G, Rinaldi D, Calandra-Buonaura G, Contin M, Amato F, Giannini G, et al. How resistant are levodopa-resistant axial symptoms? Response of freezing, posture, and voice to increasing levodopa intestinal infusion rates in Parkinson disease. Eur J Neurol. 2022;30(1):96. doi: 10.1111/ene.15558. PubMed DOI PMC
Belluscio V, Stuart S, Bergamini E, Vannozzi G, Mancini M. The Association between prefrontal cortex activity and turning behavior in people with and without freezing of gait. Neuroscience. 2019;416:168–176. doi: 10.1016/j.neuroscience.2019.07.024. PubMed DOI PMC
Bertoli M, Croce UD, Cereatti A, Mancini M. Objective measures to investigate turning impairments and freezing of gait in people with Parkinson’s disease. Gait Posture. 2019;74:187–193. doi: 10.1016/j.gaitpost.2019.09.001. PubMed DOI
D’Cruz N, Seuthe J, Ginis P, Hulzinga F, Schlenstedt C, Nieuwboer A. Short-term effects of single-session split-belt treadmill training on dual-task performance in parkinson’s disease and healthy elderly. Front Neurol. 2020;11:560084. doi: 10.3389/fneur.2020.560084. PubMed DOI PMC
Dijkstra BW, Moran Gilat L, Lizama EC, Mancini M, Bergmans B, Verschueren SMP, Nieuwboer A, et al. Impaired weight-shift amplitude in People with Parkinson’s Disease with freezing of gait. J Parkinson Dis. 2021;11(1367):80. PubMed
Coelho DB, Ribeiro de Souza C, de Lima-Pardini AC, de Treza R, Shida C, Silva-Batista C, et al. Is freezing of gait correlated with postural control in patients with moderate-to-severe Parkinson’s disease? Eur J Neurosci. 2021;53:1189–1196. doi: 10.1111/ejn.15010. PubMed DOI
Fietzek UM, Stuhlinger L, Plate A, Ceballos-Baumann A, Bötzel K. Spatial constraints evoke increased number of steps during turning in Parkinson’s disease. Clin Neurophysiol. 2017;128:1954–1960. doi: 10.1016/j.clinph.2017.07.399. PubMed DOI
Mancini M, Smulders K, Harker G, Stuart S, Nutt JG. Assessment of the ability of open—and closed-loop cueing to improve turning and freezing in people with Parkinson’s disease. Sci Rep. 2018;8:12773. doi: 10.1038/s41598-018-31156-4. PubMed DOI PMC
Son M, Cheon S-M, Youm C, Kim JW. Turning reveals the characteristics of gait freezing better than walking forward and backward in Parkinson’s disease. Gait Posture. 2022;94:131–137. doi: 10.1016/j.gaitpost.2022.03.009. PubMed DOI
Morris R, Smulders K, Peterson DS, Mancini M, Carlson-Kuhta P, Nutt JG, et al. Cognitive function in people with and without freezing of gait in Parkinson’s disease. Npj Parkinson’s Dis. 2020;6:9. doi: 10.1038/s41531-020-0111-7. PubMed DOI PMC
Kuan Y-C, Lin L-F, Wang C-Y, Hu C-C, Liang P-J, Lee S-C. Association between turning mobility and cognitive function in chronic Poststroke. Front Neurol. 2022;13:772377. doi: 10.3389/fneur.2022.772377. PubMed DOI PMC
Pei-Jung L, Chiu VJ, Yann-Cherng T, Huei-Ling SC. Turning difficulties after stroke and its relationship with trunk function. Eur J Phys Rehabil Med. 2021;57:859–865. PubMed
Soangra R, Krishnan V, John J, Rashedi E, McKenzie A. Comparison of 360\circ$ turn cycles among individuals after stroke and healthy older adults. Applied Sciences (Switzerland) [Internet]. 2021;11. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85104079954&doi=10.3390%2fapp11073202&partnerID=40&md5=35975d67f2d98d6c4cd36fe32f8bb266
Abdollahi M, Kuber PM, Shiraishi M, Soangra R, Rashedi E. Kinematic analysis of 360° turning in stroke survivors using wearable motion sensors. Sensors. 2022;22:385. doi: 10.3390/s22010385. PubMed DOI PMC
Chiu H-L, Tsai C-Y, Liu Y-L, Kang C-W, Lee S-C. Turning assessment for discrimination of frailty syndrome among community-dwelling older adults. Gait Posture. 2021;86:327–333. doi: 10.1016/j.gaitpost.2021.04.004. PubMed DOI
Swanson CW, Fling BW. Discriminative mobility characteristics between neurotypical young, middle-aged, and older adults using wireless inertial sensors. Sensors. 2021;21(19):6644. doi: 10.3390/s21196644. PubMed DOI PMC
Swanson CW, Richmond SB, Sharp BE, Fling BW. Middle-age people with multiple sclerosis demonstrate similar mobility characteristics to neurotypical older adults. Multiple Sclerosis Related Disorder. 2021;51:102924. doi: 10.1016/j.msard.2021.102924. PubMed DOI
Wright RL, Peters DM, Robinson PD, Sitch AJ, Watt TN, Hollands MA. Differences in axial segment reorientation during standing turns predict multiple falls in older adults. Gait Posture. 2012;36:541–545. doi: 10.1016/j.gaitpost.2012.05.013. PubMed DOI
Stevens ES, Earhart GM. Changes in perception of active but not passive turning following stepping on the rotating treadmill. Exp Brain Res. 2006;171:340–346. doi: 10.1007/s00221-005-0276-7. PubMed DOI
van den Bogert AJ, Geijtenbeek T, Even-Zohar O, Steenbrink F, Hardin EC. A real-time system for biomechanical analysis of human movement and muscle function. Med Biol Eng Comput. 2013;51:1069–1077. doi: 10.1007/s11517-013-1076-z. PubMed DOI PMC
Charlton IW, Tate P, Smyth P, Roren L. Repeatability of an optimised lower body model. Gait Posture. 2004;20:213–221. doi: 10.1016/j.gaitpost.2003.09.004. PubMed DOI
El-Gohary M, Pearson S, McNames J, Mancini M, Horak F, Mellone S, et al. Continuous monitoring of turning in patients with movement disability. Sensors. 2013;14:356–369. doi: 10.3390/s140100356. PubMed DOI PMC
Pearson S, Mancini M, El-Gohary M, McNames J, Horak F. Turn detection and characterization with inertial sensors of the international congress on sports science research and technology support—icSPORTS. Setúbal: SciTePress; 2013.
Delval A, Tard C, Defebvre L. Why we should study gait initiation in Parkinson’s disease. Neurophysiol Clinique/Clin Neurophysiol. 2014;44:69–76. doi: 10.1016/j.neucli.2013.10.127. PubMed DOI
Factor SA, Jennings DL, Molho ES, Marek KL. The natural history of the syndrome of primary progressive freezing gait. Arch Neurol. 2002;59:1778–1783. doi: 10.1001/archneur.59.11.1778. PubMed DOI
Delval A, Bleuse S, Simonin C, Delliaux M, Rolland B, Destee A, et al. Are gait initiation parameters early markers of Huntington’s disease in pre-manifest mutation carriers? Gait Posture. 2011;34:202–207. doi: 10.1016/j.gaitpost.2011.04.011. PubMed DOI
Cho SH, Park JM, Kwon OY. Gender differences in three dimensional gait analysis data from 98 healthy Korean adults. Clin Biomech. 2004;19:145–152. doi: 10.1016/j.clinbiomech.2003.10.003. PubMed DOI
Abualait T, Ahsan M. Comparison of gender, age, and body mass index for spatiotemporal parameters of bilateral gait pattern. F1000Res. 2022;10:266. doi: 10.12688/f1000research.51700.2. DOI
Simon SR. Quantification of human motion: gait analysis—benefits and limitations to its application to clinical problems. J Biomech. 2004;37:1869–1880. doi: 10.1016/j.jbiomech.2004.02.047. PubMed DOI
Rhea CK, Kiefer AW, Wright WG, Raisbeck LD, Haran FJ. Interpretation of postural control may change due to data processing techniques. Gait Posture. 2015;41:731–735. doi: 10.1016/j.gaitpost.2015.01.008. PubMed DOI
Duhamel A, Bourriez JL, Devos P, Krystkowiak P, Destée A, Derambure P, et al. Statistical tools for clinical gait analysis. Gait Posture. 2004;20:204–212. doi: 10.1016/j.gaitpost.2003.09.010. PubMed DOI
Iosa M, Picerno P, Paolucci S, Morone G. Wearable inertial sensors for human movement analysis. Expert Rev Med Devices. 2016;13:641–659. doi: 10.1080/17434440.2016.1198694. PubMed DOI
Celik Y, Stuart S, Woo WL, Godfrey A. Gait analysis in neurological populations: progression in the use of wearables. Med Eng Phys. 2021;87:9–29. doi: 10.1016/j.medengphy.2020.11.005. PubMed DOI
Cheng F-Y, Yang Y-R, Wang C-J, Wu Y-R, Cheng S-J, Wang H-C, et al. Factors influencing turning and its relationship with falls in individuals with Parkinson’s Disease. PLoS ONE. 2014;9:93572. doi: 10.1371/journal.pone.0093572. PubMed DOI PMC
Koshino Y, Yamanaka M, Ezawa Y, Ishida T, Kobayashi T, Samukawa M, et al. Lower limb joint motion during a cross cutting movement differs in individuals with and without chronic ankle instability. Phys Ther Sport. 2014;15:242–248. doi: 10.1016/j.ptsp.2013.12.001. PubMed DOI
Dixon PC, Stebbins J, Theologis T, Zavatsky AB. Ground reaction forces and lower-limb joint kinetics of turning gait in typically developing children. J Biomech. 2014;47:3726–3733. doi: 10.1016/j.jbiomech.2014.09.011. PubMed DOI
Sant’Anna A, Wickström N. A symbol-based approach to gait analysis from acceleration signals: identification and detection of gait events and a new measure of gait symmetry. IEEE Trans Inform Technol Biomed. 2010;14:1180–1187. doi: 10.1109/TITB.2010.2047402. PubMed DOI
Balasubramanian S, Melendez-Calderon A, Roby-Brami A, Burdet E. On the analysis of movement smoothness. J Neuroeng Rehabil. 2015;12:112. doi: 10.1186/s12984-015-0090-9. PubMed DOI PMC
Melendez-Calderon A, Shirota C, Balasubramanian S. Estimating movement smoothness from inertial measurement units. Front Bioeng Biotechnol. 2021 doi: 10.3389/fbioe.2020.558771. PubMed DOI PMC
Sijobert B, Azevedo C, Andreu D, Verna C, Geny C. Effects of sensitive electrical stimulation-based somatosensory cueing in Parkinson’s Disease gait and freezing of gait assessment. Artif Organs. 2017;41:E222–E232. doi: 10.1111/aor.13059. PubMed DOI
Mobbs RJ, Perring J, Raj SM, Maharaj M, Yoong NKM, Sy LW, et al. Gait metrics analysis utilizing single-point inertial measurement units: a systematic review. Mhealth. 2022;8:9. doi: 10.21037/mhealth-21-17. PubMed DOI PMC
Krupička R, Krýže P, Neťuková S, Duspivová T, Klempíř O, Szabó Z, et al. Instrumental analysis of finger tapping reveals a novel early biomarker of parkinsonism in idiopathic rapid eye movement sleep behaviour disorder. Sleep Med. 2020;75:45–49. doi: 10.1016/j.sleep.2020.07.019. PubMed DOI
Salarian A, Horak FB, Zampieri C, Carlson-Kuhta P, Nutt JG, Aminian K. iTUG, a sensitive and reliable measure of mobility. IEEE Trans Neural Syst Rehabil Eng. 2010;18:303–310. doi: 10.1109/TNSRE.2010.2047606. PubMed DOI PMC
Smith E, Walsh L, Doyle J, Greene B, Blake C. The reliability of the quantitative timed up and go test (QTUG) measured over five consecutive days under single and dual-task conditions in community dwelling older adults. Gait Posture. 2016;43:239–244. doi: 10.1016/j.gaitpost.2015.10.004. PubMed DOI
Schniepp R, Wuehr M, Schlick C, Huth S, Pradhan C, Dieterich M, et al. Increased gait variability is associated with the history of falls in patients with cerebellar ataxia. J Neurol. 2014;261:213–223. doi: 10.1007/s00415-013-7189-3. PubMed DOI
Lenhoff MW, Santner TJ, Otis JC, Peterson MGE, Williams BJ, Backus SI. Bootstrap prediction and confidence bands: a superior statistical method for analysis of gait data. Gait Posture. 1999;9:10–17. doi: 10.1016/S0966-6362(98)00043-5. PubMed DOI
Delval A, Salleron J, Bourriez J-L, Bleuse S, Moreau C, Krystkowiak P, et al. Kinematic angular parameters in PD: reliability of joint angle curves and comparison with healthy subjects. Gait Posture. 2008;28:495–501. doi: 10.1016/j.gaitpost.2008.03.003. PubMed DOI
Bacon-Shone VC, Bacon-Shone J. Gait of normal Hong Kong Chinese children: the bootstrap approach. Hong Kong Physiother J. 2000;18:21–25. doi: 10.1016/S1013-7025(09)70013-2. DOI
Viteckova S, Klempir O, Dusek P, Krupicka R, Szabo Z, Růžička E. Statistical analysis of the 180 degree walking turn: common patterns, repeatability and prediction bands of turn signals. Biomed Signal Process Control. 2020;56:101689. doi: 10.1016/j.bspc.2019.101689. DOI
Neťuková S, Klempíř O, Krupička R, Dušek P, Kutílek P, Szabó Z, et al. The timed up & go test sit-to-stand transition: which signals measured by inertial sensors are a viable route for continuous analysis? Gait Posture. 2021;84:8–10. doi: 10.1016/j.gaitpost.2020.11.006. PubMed DOI
Anderst WJ. Bootstrap prediction bands for cervical spine intervertebral kinematics during in vivo three-dimensional head movements. J Biomech. 2015;48:1270–1276. doi: 10.1016/j.jbiomech.2015.02.054. PubMed DOI
Cutti AG, Parel I, Raggi M, Petracci E, Pellegrini A, Accardo AP, et al. Prediction bands and intervals for the scapulo-humeral coordination based on the Bootstrap and two Gaussian methods. J Biomech. 2014;47:1035–1044. doi: 10.1016/j.jbiomech.2013.12.028. PubMed DOI