Cubozoan genome illuminates functional diversification of opsins and photoreceptor evolution
Language English Country Great Britain, England Media electronic
Document type Journal Article
PubMed
26154478
PubMed Central
PMC5155618
DOI
10.1038/srep11885
PII: srep11885
Knihovny.cz E-resources
- MeSH
- Cyclic AMP metabolism MeSH
- Biological Evolution * MeSH
- Cubozoa genetics metabolism MeSH
- Gene Expression MeSH
- Photoreceptor Cells metabolism MeSH
- Phylogeny MeSH
- Genome * MeSH
- Genomics methods MeSH
- Chromosome Mapping MeSH
- RNA, Messenger genetics MeSH
- Multigene Family MeSH
- Opsins genetics metabolism MeSH
- GTP-Binding Proteins metabolism MeSH
- Signal Transduction MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Cyclic AMP MeSH
- RNA, Messenger MeSH
- Opsins MeSH
- GTP-Binding Proteins MeSH
Animals sense light primarily by an opsin-based photopigment present in a photoreceptor cell. Cnidaria are arguably the most basal phylum containing a well-developed visual system. The evolutionary history of opsins in the animal kingdom has not yet been resolved. Here, we study the evolution of animal opsins by genome-wide analysis of the cubozoan jellyfish Tripedalia cystophora, a cnidarian possessing complex lens-containing eyes and minor photoreceptors. A large number of opsin genes with distinct tissue- and stage-specific expression were identified. Our phylogenetic analysis unequivocally classifies cubozoan opsins as a sister group to c-opsins and documents lineage-specific expansion of the opsin gene repertoire in the cubozoan genome. Functional analyses provided evidence for the use of the Gs-cAMP signaling pathway in a small set of cubozoan opsins, indicating the possibility that the majority of other cubozoan opsins signal via distinct pathways. Additionally, these tests uncovered subtle differences among individual opsins, suggesting possible fine-tuning for specific photoreceptor tasks. Based on phylogenetic, expression and biochemical analysis we propose that rapid lineage- and species-specific duplications of the intron-less opsin genes and their subsequent functional diversification promoted evolution of a large repertoire of both visual and extraocular photoreceptors in cubozoans.
See more in PubMed
Terakita A. The opsins. Genome Biol 6, 213, 10.1186/gb-2005-6-3-213 (2005). PubMed DOI PMC
Sakmar T. P., Menon S. T., Marin E. P. & Awad E. S. Rhodopsin: insights from recent structural studies. Annual Review of Biophysics and Biomolecular Structure 31, 443- 484, 10.1146/annurev.biophys.31.082901.134348 (2002). PubMed DOI
Porter M. L. et al. Shedding new light on opsin evolution. Proc Biol Sci 279, 3–14, 10.1098/rspb.2011.1819 (2012). PubMed DOI PMC
Suga H., Schmid V. & Gehring W. J. Evolution and functional diversity of jellyfish opsins. Current Biology 18, 51–55, 10.1016/j.cub.2007.11.059 (2008). PubMed DOI
Plachetzki D. C., Degnan B. M. & Oakley T. H. The origins of novel protein interactions during animal opsin evolution. PLoS One 2, e1054, 10.1371/journal.pone.0001054 (2007). PubMed DOI PMC
Feuda R., Hamilton S. C., McInerney J. O. & Pisani D. Metazoan opsin evolution reveals a simple route to animal vision. Proceedings of the National Academy of Sciences of the United States of America 109, 18868–18872, 10.1073/pnas.1204609109 (2012). PubMed DOI PMC
Kojima D. et al. A novel Go-mediated phototransduction cascade in scallop visual cells. Journal of Biological Chemistry 272, 22979–22982 (1997). PubMed
Koyanagi M., Terakita A., Kubokawa K. & Shichida Y. Amphioxus homologs of Go-coupled rhodopsin and peropsin having 11-cis- and all-trans-retinals as their chromophores. FEBS Letters 531, 525–528 (2002). PubMed
Hara T. & Hara R. Rhodopsin and retinochrome in the squid retina. Nature 214, 573–575 (1967). PubMed
Plachetzki D. C., Fong C. R. & Oakley T. H. The evolution of phototransduction from an ancestral cyclic nucleotide gated pathway. Proc Biol Sci 277, 1963–1969, 10.1098/rspb.2009.1797 (2010). PubMed DOI PMC
Feuda R., R.-S. O., Oakley T. H. & Pisani D. The comb jelly opsins and the origins of animal phototransduction. Genome Biology and Evolution 6, 1964-1971, 10.1093/gbe/evu154 (2014). PubMed DOI PMC
Marin E. P. et al. The amino terminus of the fourth cytoplasmic loop of rhodopsin modulates rhodopsin-transducin interaction. Journal of Biological Chemistry 275, 1930–1936 (2000). PubMed
Martin V. J. Photoreceptors of cnidarians. Can. J. Zool. 80, 1703–1722, 10.1139/Z02-136 (2002). DOI
Nilsson D. E., Gislen L., Coates M. M., Skogh C. & Garm A. Advanced optics in a jellyfish eye. Nature 435, 201–205, 10.1038/nature03484 (2005). PubMed DOI
Coates M. M. Visual ecology and functional morphology of cubozoa (cnidaria). Integr Comp Biol 43, 542–548, 10.1093/icb/43.4.542 (2003). PubMed DOI
O’Connor M., Nilsson D. E. & Garm A. Temporal properties of the lens eyes of the box jellyfish Tripedalia cystophora. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 196, 213–220, 10.1007/s00359-010-0506-8 (2010). PubMed DOI PMC
Garm A., Oskarsson M. & Nilsson D. E. Box jellyfish use terrestrial visual cues for navigation. Current Biology 21, 798–803, 10.1016/j.cub.2011.03.054 (2011). PubMed DOI
Petie R., Garm A. & Nilsson D. E. Visual control of steering in the box jellyfish Tripedalia cystophora. Journal of Experimental Biology 214, 2809–2815, 10.1242/jeb.057190 (2011). PubMed DOI
Land M. F. & Nilsson D. E. Animal eyes. Oxford, Oxford University Press (2002).
Kozmik Z. et al. Role of Pax genes in eye evolution: a cnidarian PaxB gene uniting Pax2 and Pax6 functions. Dev Cell 5, 773–785 (2003). PubMed
Piatigorsky J. & Kozmik Z. Cubozoan jellyfish: an Evo/Devo model for eyes and other sensory systems. International Journal of Developmental Biology 48, 719–-729., 10.1387/ijdb.041851jp (2004). PubMed DOI
Kozmik Z. et al. Assembly of the cnidarian camera-type eye from vertebrate-like components. Proceedings of the National Academy of Sciences of the United States of America 105, 8989–8993, 10.1073/pnas.0800388105 (2008). PubMed DOI PMC
Kozmik Z. et al. Cubozoan crystallins: evidence for convergent evolution of pax regulatory sequences. Evol Dev 10, 52–61, 10.1111/j.1525-142X.2007.00213.x (2008). PubMed DOI
O’Connor M., Garm A. & Nilsson D. E. Structure and optics of the eyes of the box jellyfish Chiropsella bronzie. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 195, 557–569, 10.1007/s00359-009-0431-x (2009). PubMed DOI
Parkefelt L., Skogh C., Nilsson D. E. & Ekstrom P. Bilateral symmetric organization of neural elements in the visual system of a coelenterate, Tripedalia cystophora (Cubozoa). Journal of Comparative Neurology 492, 251–262, 10.1002/cne.20658 (2005). PubMed DOI
Garm A., Andersson F. & Nilsson D. E. Unique structure and optics of the lesser eyes of the box jellyfish Tripedalia cystophora. Vision Research 48, 1061–1073, 10.1016/j.visres.2008.01.019 (2008). PubMed DOI
Koyanagi M. et al. Jellyfish vision starts with cAMP signaling mediated by opsin-G(s) cascade. Proceedings of the National Academy of Sciences of the United States of America 105, 15576–15580, 10.1073/pnas.0806215105 (2008). PubMed DOI PMC
Panda S. et al. Illumination of the melanopsin signaling pathway. Science 307, 600–604, 10.1126/science.1105121 (2005). PubMed DOI
Yamashita T. et al. Opn5 is a UV-sensitive bistable pigment that couples with Gi subtype of G protein. Proceedings of the National Academy of Sciences of the United States of America 107, 22084–22089, 10.1073/pnas.1012498107 (2010). PubMed DOI PMC
Bridge D., Cunningham C. W., Schierwater B., DeSalle R. & Buss L. W. Class-level relationships in the phylum Cnidaria: evidence from mitochondrial genome structure. Proceedings of the National Academy of Sciences of the United States of America 89, 8750–8753 (1992). PubMed PMC
Bailes H. J., Lucas, Z. L. R. J. Reproducible and sustained regulation of Gαs signalling using a metazoan opsin as an optogenetic tool. PLOS one 7, 10.1371/journal.pone.0030774 (2012). PubMed DOI PMC
Koyanagi M., Kubokawa K., Tsukamoto H., Shichida Y. & Terakita A. Cephalochordate melanopsin: evolutionary linkage between invertebrate visual cells and vertebrate photosensitive retinal ganglion cells. Current Biology 15, 1065–1069, 10.1016/j.cub.2005.04.063 (2005). PubMed DOI
Hohenegger M. et al. Gsalpha-selective G protein antagonists. Proceedings of the National Academy of Sciences of the United States of America 95, 346–351 (1998). PubMed PMC
Shabalina S. A. et al. Distinct patterns of expression and evolution of intronless and intron-containing mammalian genes. Molecular biology and evolution 27, 1745–1749, 10.1093/molbev/msq086 (2010). PubMed DOI PMC
Zou M., Guo B. & He S. The roles and evolutionary patterns of intronless genes in deuterostomes. Comparative and functional genomics 2011, 680673, 10.1155/2011/680673 (2011). PubMed DOI PMC
Gentles A. J. & Karlin S. Why are human G-protein-coupled receptors predominantly intronless? Trends in genetics : TIG 15, 47–49 (1999). PubMed
Brosius J. Many G-protein-coupled receptors are encoded by retrogenes. Trends in genetics : TIG 15, 304–305 (1999). PubMed
Fridmanis D., Fredriksson R., Kapa I., Schioth H. B. & Klovins J. Formation of new genes explains lower intron density in mammalian Rhodopsin G protein-coupled receptors. Molecular phylogenetics and evolution 43, 864–880, 10.1016/j.ympev.2006.11.007 (2007). PubMed DOI
UCSC, G. B. G. Opsin evolution: update blog http://genomewiki.ucsc.edu, (Date of acces: 20/05/2012).
Morris A. B. J. & Hunt D. M. The molecular basis of a spectral shift in the rhodopsin of two species of squid from different photic enviroments. Proceedings of the Royal Society of London B 254, 233–240 (1993). PubMed
Fitzgibbon J., , Slobodvanyuk S. J., Bellingham J., Bowmaker J. K. & Hunt D. M. The rhodopsin-encoding gene of bony fish lacks introns. Gene 164, 273–277 (1995). PubMed
Innan H. & Kondrashov F. The evolution of gene duplications: classifying and distinguishing between models. Nature reviews. Genetics 11, 97–108, 10.1038/nrg2689 (2010). PubMed DOI
Lynch M. & Conery J. S. The evolutionary fate and consequences of duplicate genes. Science (New York, N.Y.) 290, 1151–1155 (2000). PubMed
Matsumoto Y., Fukamachi S., Mitani H. & Kawamura S. Functional characterization of visual opsin repertoire in Medaka (Oryzias latipes). Gene 371, 268–278, 10.1016/j.gene.2005.12.005 (2006). PubMed DOI
Rennison D. J., Owens G. L. & Taylor J. S. Opsin gene duplication and divergence in ray-finned fish. Molecular phylogenetics and evolution 62, 986–1008, 10.1016/j.ympev.2011.11.030 (2012). PubMed DOI
Skogh C., Garm A., Nilsson D. E. & Ekstrom P. Bilaterally symmetrical rhopalial nervous system of the box jellyfish Tripedalia cystophora. Journal of Morphology 267, 1391–1405, 10.1002/jmor.10472 (2006). PubMed DOI
Garm A., Ekstrom P., Boudes M. & Nilsson D. E. Rhopalia are integrated parts of the central nervous system in box jellyfish. Cell Tissue Res 325, 333–343, 10.1007/s00441-005-0134-8 (2006). PubMed DOI
Stockl A. L., Petie R. & Nilsson D. E. Setting the pace: new insights into central pattern generator interactions in box jellyfish swimming. PLoS One 6, e27201, 10.1371/journal.pone.0027201 (2011). PubMed DOI PMC
Yamasu T. & Yoshida M. Fine structure of complex ocelli of a cubomedusan, Tamoya bursaria Haeckel. Cell and Tissue Research 170, 325–339 (1976). PubMed
Laska G., Hundgen, M. Morphologie und ultrastruktur der lichtsinnesorgane von Tripedalia cystophora Conant (Cnidaria, Cubozoa). Zool Jb Anat 108, 107–123 (1982).
O’Connor M. et al. Visual pigment in the lens eyes of the box jellyfish Chiropsella bronzie. Proc Biol Sci 277, 1843–1848, 10.1098/rspb.2009.2248 (2010). PubMed DOI PMC
Ekstrom P., Garm A., Palsson J., Vihtelic T. S. & Nilsson D. E. Immunohistochemical evidence for multiple photosystems in box jellyfish. Cell and Tissue Research 333, 115–124, 10.1007/s00441-008-0614-8 (2008). PubMed DOI
Garm A. & Ekstrom P. Evidence for multiple photosystems in jellyfish. Int Rev Cell Mol Biol 280, 41–78, 10.1016/s1937-6448(10)80002-4 (2010). PubMed DOI
Yoshida M. Extraocular photoreception. Handbook of sensory physiology VII/6A, 582–640 (1979).
Taddei-Ferretti C. & Musio C. Photobehaviour of Hydra (Cnidaria, Hydrozoa) and correlated mechanisms: a case of extraocular photosensitivity. Journal of Photochemistry and Photobiology. B, Biology 55, 88–101 (2000). PubMed
Arkett S. A. & Spencer A. N. Neuronal mechanism of a hydromedusan shadow reflex. I. Identified reflex components and sequence of events J. Comp. Physiol. A 159, 201–213 (1986).
Sawyer, S. J., D. H. B. & Shick M. Neurophysiological correlates of the behavioral response to light in the sea anemone Anthopleura elegantissima. Biol. Bull. (Woods Hole, Mass.) 186, 195–201 (1994). PubMed
Musio C. et al. First identification and localization of a visual pigment in Hydra (Cnidaria, Hydrozoa). J Comp Physiol A 187, 79–81 (2001). PubMed
Plachetzki D. C., Fong C. R. & Oakley T. H. Cnidocyte discharge is regulated by light and opsin-mediated phototransduction. BMC Biol 10, 17, 10.1186/1741-7007-10-17 (2012). PubMed DOI PMC
Mason B. et al. Evidence for multiple phototransduction pathways in a reef-building coral. PLoS One 7, e50371, 10.1371/journal.pone.0050371 (2012). PubMed DOI PMC
Nordstrom K., Wallen R., Seymour J. & Nilsson D. A simple visual system without neurons in jellyfish larvae. Proc Biol Sci 270, 2349–2354, 10.1098/rspb.2003.2504 (2003). PubMed DOI PMC
Koyanagi M.T. E., Nagata T., Tsukamoto H. & Terakita A. Homologs of vertebrate Opn3 potentially serve as a light sensor in nonphotoreceptive tissue. Proceeding of the National Academy of Sciences of the United States of America 110, 4998–5003, 10.1073/pnas.1219416110 (2013). PubMed DOI PMC
Heck M. S. S., Maretzki D., Bartl F. J., Ritter E., Palczewski K.& Hofmann K. P. Signaling States of Rhodopsin: FORMATION OF THE STORAGE FORM, METARHODOPSIN III, FROM ACTIVE METARHODOPSIN II. Journal of Biological Chemistry 278, 3162–3169 (2003). PubMed PMC
Pearson W. R. & Lipman D. J. Improved tools for biological sequence comparison. Proceedings of the National Academy of Sciences of the United States of America 85, 2444–2448 (1988). PubMed PMC
Guindon S. et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59, 307–321, 10.1093/sysbio/syq010 (2010). PubMed DOI
Le S. Q. & Gascuel O. An improved general amino acid replacement matrix. Molecular Biology and Evolution 25, 1307–1320, 10.1093/molbev/msn067 (2008). PubMed DOI
Anisimova M. & Gascuel O. Approximate likelihood-ratio test for branches: A fast, accurate, and powerful alternative. Syst Biol 55, 539–552, 10.1080/10635150600755453 (2006). PubMed DOI
Larkin M. A. et al. Clustal W and Clustal X version 2.0. Bioinformatics 23, 2947–2948, 10.1093/bioinformatics/btm404 (2007). PubMed DOI