Embryogenesis of the heart muscle
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem, přehledy
Grantová podpora
P20 RR016434
NCRR NIH HHS - United States
C06 RR018823-01
NCRR NIH HHS - United States
R01 HL033756
NHLBI NIH HHS - United States
P20 RR016434-05
NCRR NIH HHS - United States
C06 RR018823
NCRR NIH HHS - United States
RR16434
NCRR NIH HHS - United States
PubMed
18598977
PubMed Central
PMC2715960
DOI
10.1016/j.hfc.2008.02.007
PII: S1551-7136(08)00041-X
Knihovny.cz E-zdroje
- MeSH
- embryonální vývoj fyziologie MeSH
- kardiomyocyty fyziologie MeSH
- kontrakce myokardu fyziologie MeSH
- lidé MeSH
- myokard * MeSH
- převodní systém srdeční fyziologie MeSH
- remodelace komor fyziologie MeSH
- srdce - funkce komor MeSH
- srdce embryologie růst a vývoj fyziologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Research Support, N.I.H., Extramural MeSH
This article concerns the development of myocardial architecture--crucial for contractile performance of the heart and its conduction system, essential for generation and coordinated spread of electrical activity. Topics discussed include molecular determination of cardiac phenotype (contractile and conducting), remodeling of ventricular wall architecture and its blood supply, and relation of trabecular compaction to noncompaction cardiomyopathy. Illustrated are the structure and function of the tubular heart, time course of trabecular compaction, and development of multilayered spiral systems of the compact layer.
Zobrazit více v PubMed
Anderson RH, Ho SY. The architecture of the sinus node, the atrioventricular conduction axis, and the internodal atrial myocardium. J Cardiovasc Electrophysiol. 1998;9:1233. PubMed
Ben-Shachar G, Arcilla RA, Lucas RV, et al. Ventricular trabeculations in the chick embryo heart and their contribution to ventricular and muscular septal development. Circ Res. 1985;57:759. PubMed
Blausen BE, Johannes RS, Hutchins GM. Computer-based reconstructions of the cardiac ventricles of human embryos. Am J Cardiovasc Pathol. 1990;3:37. PubMed
Butcher JT, McQuinn TC, Sedmera D, et al. Transitions in early embryonic atrioventricular valvular function correspond with changes in cushion biomechanics that are predictable by tissue composition. Circ Res. 2007;100:1503. PubMed
Challice CE, Viragh S. The embryonic development of the mammalian heart. In: Challice CE, Viragh S, editors. Ultrastructure of the mammalian heart. New York: Academic Press; 1973. p. 91.
Chen TH, Chang TC, Kang JO, et al. Epicardial induction of fetal cardiomyocyte proliferation via a retinoic acid-inducible trophic factor. Dev Biol. 2002;250:198. PubMed
Chuck ET, Freeman DM, Watanabe M, et al. Changing activation sequence in the embryonic chick heart. Implications for the development of the His-Purkinje system. Circ Res. 1997;81:470. PubMed
Clark EB, Hu N, Dummett JL, et al. Ventricular function and morphology in chick embryo from stages 18 to 29. Am J Physiol. 1986;250:H407. PubMed
de Jong F, Opthof T, Wilde AA, et al. Persisting zones of slow impulse conduction in developing chicken hearts. Circ Res. 1992;71:240. PubMed
Eisenberg LM, Eisenberg CA. An in vitro analysis of myocardial potential indicates that phenotypic plasticity is an innate property of early embryonic tissue. Stem Cells Dev. 2004;13:614. PubMed
Finsterer J, Stollberger C. Do cypher gene mutations cause left ventricular noncompaction with subclinical myopathy? J Am Coll Cardiol. 2004;44:1139. author reply 1139. PubMed
Forouhar AS, Liebling M, Hickerson A, et al. The embryonic vertebrate heart tube is a dynamic suction pump. Science. 2006;312:751. PubMed
Gourdie RG, Harris BS, Bond J, et al. Development of the cardiac pacemaking and conduction system. Birth Defects Research. 2003;69C:46. PubMed
Gourdie RG, Wei Y, Kim D, et al. Endothelin-induced conversion of embryonic heart muscle cells into impulse-conducting Purkinje fibers. Proc Natl Acad Sci U S A. 1998;95:6815. PubMed PMC
Harris BS, Spruill L, Edmonson AM, et al. Differentiation of cardiac Purkinje fibers requires precise spatiotemporal regulation of Nkx2-5 expression. Dev Dyn. 2006;235:38. PubMed PMC
Hirokawa K. A quantitative study on pre- and postnatal growth of human heart. Acta Pathol Jpn. 1972;22:613. PubMed
Ho SY, Anderson RH, Sanchez-Quintana D. Atrial structure and fibres: morphologic bases of atrial conduction. Cardiovasc Res. 2002;54:325. PubMed
Hoogaars WM, Engel A, Brons JF, et al. Tbx3 controls the sinoatrial node gene program and imposes pacemaker function on the atria. Genes Dev. 2007;21:1098. PubMed PMC
Hu N, Clark EB. Hemodynamics of the stage 12 to stage 29 chick embryo. Circ Res. 1989;65:1665. PubMed
Ichida F, Tsubata S, Bowles KR, et al. Novel gene mutations in patients with left ventricular noncompaction or Barth syndrome. Circulation. 2001;103:1256. PubMed
Jay PY, Harris BS, Maguire CT, et al. Nkx2-5 mutation causes anatomic hypoplasia of the cardiac conduction system. J Clin Invest. 2004;113:1130. PubMed PMC
Jenni R, Oechslin E, Schneider J, et al. Echocardiographic and pathoanatomical characteristics of isolated left ventricular non-compaction: a step towards classification as a distinct cardiomyopathy. Heart. 2001;86:666. PubMed PMC
Jeter JR, Jr, Cameron IL. Cell proliferation patterns during cytodifferentiation in embryonic chick tissues: liver, heart and erythrocytes. J Embryol Exp Morphol. 1971;25:405. PubMed
Jouk PS, Usson Y, Michalowicz G, et al. Three-dimensional cartography of the pattern of the myofibres in the second trimester fetal human heart. Anat Embryol (Berl) 2000;202:103. PubMed
Kamino K. Optical approaches to ontogeny of electrical activity and related functional organization during early heart development. Physiol Rev. 1991;71:53. PubMed
Kirby ML. Cardiac Development. New York: Oxford University Press; 2007.
Kokubo H, Tomita-Miyagawa S, Hamada Y, et al. Hesr1 and Hesr2 regulate atrioventricular boundary formation in the developing heart through the repression of Tbx2. Development. 2007;134:747. PubMed
Kwee L, Baldwin HS, Shen HM, et al. Defective development of the embryonic and extraembryonic circulatory systems in vascular cell adhesion molecule (VCAM-1) deficient mice. Development. 1995;121:489. PubMed
Lunkenheimer PP, Redmann K, Kling N, et al. Three-dimensional architecture of the left ventricular myocardium. Anat Rec A Discov Mol Cell Evol Biol. 2006;288:565. PubMed
Lyons I, Parsons LM, Hartley L, et al. Myogenic and morphogenetic defects in the heart tubes of murine embryos lacking the homeo box gene Nkx2–5. Genes Dev. 1995;9:1654. PubMed
Mall FP. On the development of the human heart. Am J Anat. 1912;13:249.
McQuinn TC, Bratoeva M, Dealmeida A, et al. High-frequency ultrasonographic imaging of avian cardiovascular development. Dev Dyn. 2007;236:3503–3513. PubMed
Mikawa T, Borisov A, Brown AM, et al. Clonal analysis of cardiac morphogenesis in the chicken embryo using a replication-defective retrovirus: I. Formation of the ventricular myocardium. Dev Dyn. 1992;193:11. PubMed
Miller CE, Wong CL. Trabeculated embryonic myocardium shows rapid stress relaxation and non-quasi-linear viscoelastic behavior. J Biomech. 2000;33:615. PubMed
Miller CE, Wong CL, Sedmera D. Pressure overload alters stress-strain properties of the developing chick heart. Am J Physiol Heart Circ Physiol. 2003;285:H1849. PubMed
Minot CS. On a hitherto unrecognised circulation without capillaries in the organs of Vertebrata. Proc Boston Soc Nat Hist. 1901;29:185. PubMed PMC
Mommersteeg MT, Hoogaars WM, Prall OW, et al. Molecular Pathway for the Localized Formation of the Sinoatrial Node. Circ Res. 2007;100:354. PubMed
Moorman AF, Christoffels VM. Cardiac chamber formation: development, genes, and evolution. Physiol Rev. 2003;83:1223. PubMed
Moskowitz IP, Pizard A, Patel VV, et al. The T-Box transcription factor Tbx5 is required for the patterning and maturation of the murine cardiac conduction system. Development. 2004;131:4107. PubMed
Myers DC, Fishman GI. Toward an understanding of the genetics of murine cardiac pacemaking and conduction system development. Anat Rec. 2004;280A:1018. PubMed
Nanka O, Valasek P, Dvorakova M, et al. Experimental hypoxia and embryonic angiogenesis. Dev Dyn. 2006;235:723. PubMed
Ostadal B, Schiebler TH. The terminal blood bed in the heart of fish. Z Anat Entwicklungsgesch. 1971;134:101. PubMed
Pauli RM, Scheib-Wixted S, Cripe L, et al. Ventricular noncompaction and distal chromosome 5q deletion. Am J Med Genet. 1999;85:419. PubMed
Perez-Pomares JM, Phelps A, Sedmerova M, et al. Experimental studies on the spatiotemporal expression of WT1 and RALDH2 in the embryonic avian heart: a model for the regulation of myocardial and valvuloseptal development by epicardially derived cells (EPDCs) Dev Biol. 2002;247:307. PubMed
Poelmann RE, Gittenberger-de Groot AC, Mentink MM, et al. Development of the cardiac coronary vascular endothelium, studied with antiendothelial antibodies, in chicken-quail chimeras. Circ Res. 1993;73:559. PubMed
Price RL, Chintanowonges C, Shiraishi I, et al. Local and regional variations in myofibrillar patterns in looping rat hearts. Anat Rec. 1996;245:83. PubMed
Reckova M, Rosengarten C, deAlmeida A, et al. Hemodynamics is a key epigenetic factor in development of the cardiac conduction system. Circ Res. 2003;93:77. PubMed
Rentschler S, Vaidya DM, Tamaddon H, et al. Visualization and functional characterization of the developing murine cardiac conduction system. Development. 2001;128:1785. PubMed PMC
Restivo A, Smith A, Wilkinson JL, et al. The medial papillary muscle complex and its related septomarginal trabeculation. A normal anatomical study on human hearts. J Anat. 1989;163:231. PubMed PMC
Rongish BJ, Hinchman G, Doty MK, et al. Relationship of the extracellular matrix to coronary neovascularization during development. J Mol Cell Cardiol. 1996;28:2203. PubMed
Rychter Z, Ostadal B. Fate of "sinusoidal" intertrabecular spaces of the cardiac wall after development of the coronary vascular bed in chick embryo. Folia Morphol. 1971;19:31. PubMed
Rychterova V. Principle of growth in thickness of the heart ventricular wall in the chick embryo. Folia Morphol (Praha) 1971;19:262. PubMed
Sasse-Klaassen S, Probst S, Gerull B, et al. Novel gene locus for autosomal dominant left ventricular noncompaction maps to chromosome 11p15. Circulation. 2004;109:2720. PubMed
Schaefer KS, Doughman YQ, Fisher SA, et al. Dynamic patterns of apoptosis in the developing chicken heart. Dev Dyn. 2004;229:489. PubMed
Sedmera D. Development of cardiac conduction system in mammals. Journal of Applied Biomedicine. 2007;5:115.
Sedmera D, Pexieder T, Vuillemin M, et al. Developmental patterning of the myocardium. Anat Rec. 2000;258:319. PubMed
Sedmera D, Reckova M, DeAlmeida A, et al. Spatiotemporal pattern of commitment to slowed proliferation in the embryonic mouse heart indicates progressive differentiation of the cardiac conduction system. Anat Rec. 2003;274A:773. PubMed
Sedmera D, Reckova M, DeAlmeida A, et al. Functional and morphological evidence for a ventricular conduction system in the zebrafish and Xenopus heart. Am J Physiol Heart Circ Physiol. 2003;284:H1152. PubMed
Sedmera D, Thomas PS. Trabeculation in the embryonic heart [letter] Bioessays. 1996;18:607. PubMed
Sedmera D, Wessels A, Trusk TC, et al. Changes in activation sequence of embryonic chick atria correlate with developing myocardial architecture. Am J Physiol Heart Circ Physiol. 2006;291:H1646. PubMed
Shiraishi I, Takamatsu T, Fujita S. Three-dimensional observation with a confocal scanning laser microscope of fibronectin immunolabeling during cardiac looping in the chick embryo. Anat Embryol (Berl) 1995;191:183. PubMed
Streeeter DDJ. Gross Morphology and fiber geometry of the heart. In: Berne RMSN, Geiger SR, editors. Handbook of Physiology - Section 2: The Cardiovascular System. Bethesda: Am Physiol Soc; 1979. p. 61.
Taber LA. Biomechanics of cardiovascular development. Annu Rev Biomed Eng. 2001;3:1. PubMed
Takebayashi-Suzuki K, Yanagisawa M, Gourdie RG, et al. In vivo induction of cardiac Purkinje fiber differentiation by coexpression of preproendothelin-1 and endothelin converting enzyme-1. Development. 2000;127:3523. PubMed
Thompsonq RP, Reckova M, DeAlmeida A, et al. The oldest, toughest cells in the heart. In: Chadwick DJ, Goode J, editors. Development of the cardiac conduction system. Vol 250. Chichester: Wiley; 2003. p. 157.
Tobita K, Garrison JB, Li JJ, et al. Three-dimensional myofiber architecture of the embryonic left ventricle during normal development and altered mechanical loads. Anat Rec A Discov Mol Cell Evol Biol. 2005;283:193. PubMed
Tomanek RJ. Formation of the coronary vasculature: a brief review. Cardiovasc Res. 1996;31(Spec No):E46. PubMed
Tota B, Cimini V, Salvatore G, et al. Comparative study of the arterial and lacunary systems of the ventricular myocardium of elasmobranch and teleost fishes. Am J Anat. 1983;167:15. PubMed
Van Mierop LHS, Kutsche LM. Comparative Anatomy and Embryology of the Ventricles and Arterial Pole of the Vertebrate heart. In: Nora JJTA, editor. Congenital Heart Disease: Causes and Processes. New York: Futura Publishing; 1984. p. 459.
Vrancken Peeters MP, Gittenberger-de Groot AC, Mentink MM, et al. The development of the coronary vessels and their differentiation into arteries and veins in the embryonic quail heart. Dev Dyn. 1997;208:338. PubMed
Waller BF, Smith ER, Blackbourne BD, et al. Congenital hypoplasia of portions of both right and left ventricular myocardial walls. Clinical and necropsy observations in two patients with parchment heart syndrome. Am J Cardiol. 1980;46:885. PubMed
Wenink AC. Quantitative morphology of the embryonic heart: an approach to development of the atrioventricular valves. Anat Rec. 1992;234:129. PubMed
Wenink AC, Gittenberger-de Groot AC. Left and right ventricular trabecular patterns. Consequence of ventricular septation and valve development. Br Heart J. 1982;48:462. PubMed PMC
Wenink AC, Knaapen MW, Vrolijk BC, et al. Development of myocardial fiber organization in the rat heart. Anat Embryol (Berl) 1996;193:559. PubMed
Wikenheiser J, Doughman YQ, Fisher SA, et al. Differential levels of tissue hypoxia in the developing chicken heart. Dev Dyn. 2006;235:115. PubMed
Yutzey KE, Bader D. Diversification of cardiomyogenic cell lineages during early heart development. Circ Res. 1995;77:216. PubMed