Crystallization and preliminary X-ray diffraction analysis of mouse galectin-4 N-terminal carbohydrate recognition domain in complex with lactose
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
18607104
PubMed Central
PMC2443957
DOI
10.1107/s1744309108017405
PII: S1744309108017405
Knihovny.cz E-zdroje
- MeSH
- aminokyselinové motivy MeSH
- difrakce rentgenového záření * MeSH
- galektin 4 chemie metabolismus MeSH
- krystalizace MeSH
- laktosa chemie metabolismus MeSH
- ligandy MeSH
- myši MeSH
- nádorové biomarkery chemie metabolismus MeSH
- nádory tračníku chemie metabolismus MeSH
- peptidové fragmenty chemie metabolismus MeSH
- terciární struktura proteinů * MeSH
- vazebná místa MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- galektin 4 MeSH
- laktosa MeSH
- ligandy MeSH
- nádorové biomarkery MeSH
- peptidové fragmenty MeSH
Galectin-4 is thought to play a role in the process of tumour conversion of cells of the alimentary tract and the breast tissue; however, its exact function remains unknown. With the aim of elucidating the structural basis of mouse galectin-4 (mGal-4) binding specificity, we have undertaken X-ray analysis of the N-terminal domain, CRD1, of mGal-4 in complex with lactose (the basic building block of known galectin-4 carbohydrate ligands). Crystals of CRD1 in complex with lactose were obtained using vapour-diffusion techniques. The crystals belong to tetragonal space group P42(1)2 with unit-cell parameters a = 91.1, b = 91.16, c = 57.10 A and preliminary X-ray diffraction data were collected to 3.2 A resolution. An optimized crystallization procedure and cryocooling protocol allowed us to extend resolution to 2.1 A. Structure refinement is currently under way; the initial electron-density maps clearly show non-protein electron density in the vicinity of the carbohydrate binding site, indicating the presence of one lactose molecule. The structure will help to improve understanding of the binding specificity and function of the potential colon cancer marker galectin-4.
Zobrazit více v PubMed
Ackerman, S. J., Liu, L., Kwatia, M. A., Savage, M. P., Leonidas, D. D., Swaminathan, G. J. & Acharya, K. R. (2002). J. Biol. Chem.277, 14859–14868. PubMed
Barondes, S. H., Castronovo, V., Cooper, D. N., Cummings, R. D., Drickamer, K., Feizi, T., Gitt, M. A., Hirabayashi, J., Hughes, C., Kasai, K. et al. (1994). Cell, 76, 597–598. PubMed
Brewer, F. C. (2002). Biochim. Biophys. Acta, 1572, 255–262. PubMed
Cao, Z., Said, N., Amin, S., Wu, H. K., Bruce, A., Garate, M., Hsu, D. K., Kuwabara, I., Liu, F. T. & Panjwani, N. (2002). J. Biol. Chem.277, 42299–42305. PubMed
Collaborative Computational Project, Number 4 (1994). Acta Cryst. D50, 760–763. PubMed
Cooper, D. N. (2002). Biochim. Biophys. Acta, 1572, 209–231. PubMed
Danielsen, E. M. & Hansen, G. H. (2006). Mol. Membr. Biol.23, 71–79. PubMed
Danielsen, E. M. & van Deurs, B. (1997). Mol. Biol. Cell, 8, 2241–2251. PubMed PMC
Evans, P. R. (1993). Data reduction. Proceedings of the CCP4 Study Weekend CLRC Daresbury Laboratory, Warrington, England.
Holikova, Z., Hrdlickova-Cela, E., Plzak, J., Smetana, K. Jr, Betka, J., Dvorankova, B., Esner, M., Wasano, K., Andre, S., Kaltner, H., Motlik, J., Hercogova, J., Kodet, R. & Gabius, H. J. (2002). APMIS, 110, 845–856. PubMed
Huflejt, M. E., Jordan, E. T., Gitt, M. A., Barondes, S. H. & Leffler, H. (1997). J. Biol. Chem.272, 14294–14303. PubMed
Huflejt, M. E. & Leffler, H. (2004). Glycoconj. J.20, 247–255. PubMed
Hughes, R. C. (2001). Biochimie, 83, 667–676. PubMed
Ideo, H., Seko, A., Ohkura, T., Matta, K. L. & Yamashita, K. (2002). Glycobiology, 12, 199–208. PubMed
Ideo, H., Seko, A. & Yamashita, K. (2005). J. Biol. Chem.280, 4730–4737. PubMed
Kilpatrick, D. C. (2002). Biochim. Biophys. Acta, 1572, 187–197. PubMed
Leonidas, D. D., Vatzaki, E. H., Vorum, H., Celis, J. E., Madsen, P. & Acharya, K. R. (1998). Biochemistry, 37, 13930–13940. PubMed
Leslie, A. G. W. (1999). Acta Cryst. D55, 1696–1702. PubMed
Lovell, S. C., Davis, I. W., Arendall, W. B. III, de Bakker, P. I., Word, J. M., Prisant, M. G., Richardson, J. S. & Richardson, D. C. (2003). Proteins, 50, 437–450. PubMed
Markova, V., Smetana, K. Jr, Jenikova, G., Lachova, J., Krejcirikova, V., Poplstein, M., Fabry, M., Brynda, J., Alvarez, R. A., Cummings, R. D. & Maly, P. (2006). Int. J. Mol. Med.18, 65–76. PubMed
Minor, W., Cymborowski, M., Otwinowski, Z. & Chruszcz, M. (2006). Acta Cryst. D62, 859–866. PubMed
Nagy, N., Legendre, H., Engels, O., Andre, S., Kaltner, H., Wasano, K., Zick, Y., Pector, J. C., Decaestecker, C., Gabius, H. J., Salmon, I. & Kiss, R. (2003). Cancer, 97, 1849–1858. PubMed
Oda, Y., Herrmann, J., Gitt, M. A., Turck, C. W., Burlingame, A. L., Barondes, S. H. & Leffler, H. (1993). J. Biol. Chem.268, 5929–5939. PubMed
Sorme, P., Kahl-Knutson, B., Wellmar, U., Nilsson, U. J. & Leffler, H. (2003). Methods Enzymol.362, 504–512. PubMed
Stowell, S. R., Qian, Y., Karmakar, S., Koyama, N. S., Dias-Baruffi, M., Leffler, H., McEver, R. P. & Cummings, R. D. (2008). J. Immunol.180, 3091–3102. PubMed
Wang, J. L., Gray, R. M., Haudek, K. C. & Patterson, R. J. (2004). Biochim. Biophys. Acta, 1673, 75–93. PubMed
Wrackmeyer, U., Hansen, G. H., Seya, T. & Danielsen, E. M. (2006). Biochemistry, 45, 9188–9197. PubMed