Quantitative real-time PCR study on persistence of pDNA vaccine pVax-Hsp60 TM814 in beef muscles
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
PubMed
18761754
PubMed Central
PMC2542361
DOI
10.1186/1479-0556-6-11
PII: 1479-0556-6-11
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Application of plasmid DNA for immunization of food-producing animals established new standards of food safety. The addition of foreign products e.g. pDNA into the food chain should be carefully examined to ensure that neither livestock animals nor consumers develop unpredicted or undesirable side-effects. METHODS: A quantitative real-time PCR (QRTPCR) methodology was developed to study the biodistribution and persistence of plasmid DNA vaccine pDNAX (pVAX-Hsp60 TM814) in mice and beef cattle. The linear quantification range and the sensitivity of the method was found to be 10 - 10(9) copies per reaction (500 ng/gDNA) and 3 copies per reaction, respectively. RESULTS: Persistence of pDNAX in mice muscle tissue was restricted to injection site and the amount of pDNAX showed delivery formulation dependent (naked pDNA, electroporation, cationic liposome complexes) and mouse age-dependent clearance form injection site but pDNAX was still detectable even after 365 days. The QRTPCR analysis of various muscle tissue samples of vaccinated beef bulls performed 242-292 days after the last revaccination proved that residual pDNAX was found only in the injection site. The highest plasmid levels (up to 290 copies per reaction) were detected in the pDNAX:CDAN/DOPE group similarly to mice model. No pDNA was detected in the samples from distant muscles and draining lymph nodes. CONCLUSION: Quantitative real-time PCR (QRTPCR) assay was developed to assess the residual pDNA vaccine pVAX-Hsp60 TM814 in mice and beef cattle. In beef cattle, ultra low residual level of pDNA vaccine was only found at the injection site. According to rough estimation, consumption of muscles from the injection site represents almost an undetectable intake of pDNA (400 fg/g muscle tissue) for consumers. Residual plasmid in native state will hardly be found at measurable level following further meat processing. This study brings supportive data for animal and food safety and hence for further approval of pDNA vaccine field trials.
Zobrazit více v PubMed
Alarcon JB, Waine GW, McManus DP. Adv Parasitol. Vol. 42. London: Academic Press Ltd; 1999. pp. 343–410. PubMed
Vilalta A, Mahajan RK, Hartikka J, Leamy V, Martin T, Rusalov D, Bozoukova V, Lalor P, Hall K, Kaslow DC, Rolland A. II. Cationic lipid- formulated plasmid DNA-based Bacillus anthracis vaccine: Evaluation of plasmid DNA persistence and integration potential. Human Gene Therapy. 2005;16:1151–1156. doi: 10.1089/hum.2005.16.1151. PubMed DOI
Martin T, Parker SE, Hedstrom R, Le T, Hoffman SL, Norman J, Hobart P, Lew D. Plasmid DNA malaria vaccine: The potential for genomic integration after intramuscular injection. Human Gene Therapy. 1999;10:759–768. doi: 10.1089/10430349950018517. PubMed DOI
Ledwith BJ, Manam S, Troilo PJ, Barnum AB, Pauley CJ, Griffiths TG, Harper LB, Beare CM, Bagdon WJ, Nichols WW. Plasmid DNA vaccines: Investigation of integration into host cellular DNA following intramuscular injection in mice. Intervirology. 2000;43:258–272. doi: 10.1159/000053993. PubMed DOI
Wang Z, Troilo PJ, Wang X, Griffiths TG, Pacchione SJ, Barnum AB, Harper LB, Pauley CJ, Niu Z, Denisova L, Follmer TT, Rizzuto G, Ciliberto G, Fattori E, Monica NL, Manam S, Ledwith BJ. Detection of integration of plasmid DNA into host genomic DNA following intramuscular injection and electroporation. Gene Therapy. 2004;11:711–721. doi: 10.1038/sj.gt.3302213. PubMed DOI
Vilalta A, Mahajan RK, Hartikka J, Rusalov D, Martin T, Bozoukova V, Leamy V, Hall K, Lalor P, Rolland A, Kaslow DC. I. Poloxamer- formulated plasmid DNA-based human cytomegalovirus vaccine: Evaluation of plasmid DNA biodistribution/persistence and integration. Human Gene Therapy. 2005;16:1143–1150. doi: 10.1089/hum.2005.16.1143. PubMed DOI
Coelho-Castelo AAM, Trombone AP, Rosada RS, Santos RR, Bonato VLD, Sartori A, Silva CL. Tissue distribution of a plasmid DNA encoding Hsp65 gene is dependent on the dose administered through intramuscular delivery. 2006;4:1. PubMed PMC
Pal R, Yu Q, Wang SX, Kalyanaraman VS, Nair BC, Hudacik L, Whitney S, Keen T, Hung CL, Hocker L, Kennedy JS, Markham P, Lu S. Definitive toxicology and biodistribution study of a polyvalent DNA prime/protein boost human immunodeficiency virus type 1 (HIV-1) vaccine in rabbits. Vaccine. 2006;24:1225–1234. doi: 10.1016/j.vaccine.2005.07.112. PubMed DOI
Parker SE, Borellini F, Wenk ML, Hobart P, Hoffman SL, Hedstrom R, Le T, Norman JA. Plasmid DNA malaria vaccine: Tissue distribution and safety studies in mice and rabbits. Human Gene Therapy. 1999;10:741–758. doi: 10.1089/10430349950018508. PubMed DOI
Wolff JA, Ludtke JJ, Acsadi G, Williams P, Jani A. Long-term persistence of plasmid DNA and foreign gone expression in mouse muscle. Human Molecular Genetics. 1992;1:363–369. doi: 10.1093/hmg/1.6.363. PubMed DOI
Nichols WW, Ledwith BJ, Manam SV, Troilo PJ. Potential DNA vaccine integration into host cell genome. Annals of the New York Academy of Sciences. 1995;772:30–39. doi: 10.1111/j.1749-6632.1995.tb44729.x. PubMed DOI
Manam S, Ledwith B, Barnum AB, Troilo PJ, Pauley CJ, Harper LB, Griffiths TG, Niu ZT, Denisova L, Follmer TT, Pacchione SJ, Wang ZB, Beare CM, Bagdon WJ, Nichols WW. Plasmid DNA vaccines: Tissue distribution and effects of DNA sequence, adjuvants and delivery method on integration into host DNA. Intervirology. 2000;43:273–281. doi: 10.1159/000053994. PubMed DOI
Parker SE, Monteith D, Horton H, Hof R, Hernandez P, Vilalta A, Hartikka J, Hobart P, Bentley CE, Chang A, Hedstrom R, Rogers WO, Kumar S, Hoffman SL, Norman JA. Safety of a GM-CSF adjuvant-plasmid DNA malaria vaccine. Gene Therapy. 2001;8:1011–1023. doi: 10.1038/sj.gt.3301491. PubMed DOI
Kim BM, Lee DS, Choi JH, Kim CY, Son M, Suh YS, Baek KH, Park KS, Sung YC, Kim WB. In vivo kinetics and biodistribution of a HIV-1 DNA vaccine after administration in mice. Archives of Pharmacal Research. 2003;26:493–498. PubMed
Imboden M, Shi FS, Pugh TD, Freud AG, Thom NJ, Hank JA, Hao ZL, Staelin ST, Sondel PM, Mahvi DM. Safety of interleukin-12 gene therapy against cancer: A murine biodistribution and toxicity study. Human Gene Therapy. 2003;14:1037–1048. doi: 10.1089/104303403322124765. PubMed DOI
Armengol G, Ruiz LM, Orduz S. The injection of plasmid DNA in mouse muscle results in lifelong persistence of DNA, gene expression, and humoral response. Molecular Biotechnology. 2004;27:109–118. doi: 10.1385/MB:27:2:109. PubMed DOI
Zhang HY, Sun SH, Guo YJ, Chen ZH, Huang L, Gao YJ, Wan B, Zhu WJ, Xu GX, Wang JJ. Tissue distribution of a plasmid DNA containing epitopes of foot-and-mouth disease virus in mice. Vaccine. 2005;23:5632–5640. doi: 10.1016/j.vaccine.2005.06.029. PubMed DOI
Tuomela M, Malm M, Wallen M, Stanescu L, Krohn K, Peterson P. Biodistribution and general safety of a naked DNA plasmid, GTU((R))-MultiHIV, in a rat, using a quantitative PCR method. Vaccine. 2005;23:890–896. doi: 10.1016/j.vaccine.2004.08.004. PubMed DOI
Quezada A, Larson J, French M, Ponce R, Perrard J, Durland R, Coleman M. Biodistribution and safety studies of hDel-1 plasmid-based gene therapy in mouse and rabbit models. Journal of Pharmacy and Pharmacology. 2004;56:177–185. doi: 10.1211/0022357022584. PubMed DOI
Mena A, Andrew ME, Coupar BEH. Rapid dissemination of intramuscularly inoculated DNA vaccines. Immunology and Cell Biology. 2001;79:87–89. doi: 10.1046/j.1440-1711.2001.00979.x. PubMed DOI
Draghia-Akli R, Cummings KK, Khan AS, Brown PA, Carpenter RH. Effects of plasmid-mediated growth hormone releasing hormone supplementation in young, healthy Beagle dogs. Journal of Animal Science. 2003;81:2301–2310. PubMed
Hanke T, McMichael AJ, Dennis MJ, Sharpe SA, Powell LAJ, McLoughlin L, Crome SJ. Biodistribution and persistence of an MVA-vectored candidate HIV vaccine in SIV-infected rhesus macaques and SCID mice. Vaccine. 2005;23:1507–1514. doi: 10.1016/j.vaccine.2004.08.050. PubMed DOI
Raska M, Rybnikar A, Chumela J, Belakova J, Weigl E. Recombinant protein and DNA vaccines derived from hsp60 Trichophyton mentagrophytes control the clinical course of trichophytosis in bovine species and guinea-pigs. Mycoses. 2004;47:407–417. doi: 10.1111/j.1439-0507.2004.01046.x. PubMed DOI
Raska M, Zemanova E, Kafkova L, Belakova J, Vudattu NK, Kopecek P, Weigl E. Isolation and characterization of an immunogenic fragment of heat shock protein 60 from Trichophyton mentagrophytes. Mycoses. 2004;47:482–490. doi: 10.1111/j.1439-0507.2004.01046.x. PubMed DOI
Spagnou S, Miller AD, Keller M. Lipidic carriers of siRNA: Differences in the formulation, cellular uptake, and delivery with plasmid DNA. Biochemistry. 2004;43:13348–13356. doi: 10.1021/bi048950a. PubMed DOI
Krcmar P, Rencova E. Quantitative detection of species-specific DNA in feedstuffs and fish meals. 2005;68:1217–1221. PubMed
Haworth R, Pilling AM. The PCR assay in the preclinical safety evaluation of nucleic acid medicines. Human & Experimental Toxicology. 2000;19:267–276. doi: 10.1191/096032700678815891. PubMed DOI
Foss GS, Rogne S. Gene medication or genetic modification? The devil is in the details. Nature Biotechnology. 2003;21:1280–1281. doi: 10.1038/nbt1103-1280. PubMed DOI
FDA CBER. Food and Drug Administration CBER Guidance for Industry Considerations for Plasmid DNA Vaccines for Infectious Disease Indications. Fedregister. 1998. p. 36413.
Bureau MF, Naimi S, Ibad RT, Seguin J, Georger C, Arnould E, Maton L, Blanche F, Delaere P, Schennan D. Intramuscular plasmid DNA electrotransfer biodistribution and degradation. Biochimica et Biophysica Acta-Gene Structure and Expression. 2004;1676:138–148. doi: 10.1016/j.bbaexp.2003.11.005. PubMed DOI
Wolff JA, Dowty ME, Jiao SS, Repetto G, Berg RK, Ludtke JJ, Williams P, Slautterback DB. Expression of Naked Plasmids by Cultured Myotubes and Entry of Plasmids Into T-Tubules and Caveolae of Mammalian Skeletal-Muscle. Journal of Cell Science. 1992;103:1249–1261. PubMed
Barry ME, Pinto-Gonzalez D, Orson FM, McKenzie GJ, Petry GR, Barry MA. Role of endogenous endonucleases and tissue site in transfection and CpG-mediated immune activation after naked DNA injection. Human Gene Therapy. 1999;10:2461–2480. doi: 10.1089/10430349950016816. PubMed DOI
McMahon JM, Wells DJ. Electroporation for gene transfer to skeletal muscles – Current status. Biodrugs. 2004;18:155–165. doi: 10.2165/00063030-200418030-00002. PubMed DOI
Hartikka J, Sukhu I, Buchner C, Hazard D, Bozoukova V, Margalith M, Nishioka WK, Wheeler CJ, Manthorpe M, Sawdey M. Electroporation-facilitated delivery of plasmid DNA in skeletal muscle: Plasmid dependence of muscle damage and effect of poloxamer 188. Molecular Therapy. 2001;4:407–415. doi: 10.1006/mthe.2001.0483. PubMed DOI
Durieux AC, Bonnefoy R, Freyssenet D. Kinetic of transgene expression after electrotransfer into skeletal muscle: Importance of promoter origin/strength. Biochimica et Biophysica Acta-General Subjects. 2005;1725:403–409. doi: 10.1016/j.bbagen.2005.06.016. PubMed DOI
Durieux AC, Bonnefoy R, Busso T, Freyssenet D. In vivo gene electrotransfer into skeletal muscle: effects of plasmid DNA on the occurrence and extent of muscle damage. Journal of Gene Medicine. 2004;6:809–816. doi: 10.1002/jgm.534. PubMed DOI
Wang XD, Tang JG, Xie XL, Yang JC, Li S, Ji JG, Gu J. A comprehensive study of optimal conditions for naked plasmid DNA transfer into skeletal muscle by electroporation. Journal of Gene Medicine. 2005;7:1235–1245. doi: 10.1002/jgm.765. PubMed DOI
Danko I, Williams P, Herweijer H, Zhang G, Latendresse JS, Bock I, Wolff JA. High expression of naked plasmid DNA in muscles of young rodents. Human Molecular Genetics. 1997;6:1435–1443. doi: 10.1093/hmg/6.9.1435. PubMed DOI
McMahon JM, Signori E, Wells KE, Fazio VM, Wells DJ. Optimisation of electrotransfer of plasmid into skeletal muscle by pretreatment with hyaluronidase – increased expression with reduced muscle damage. Gene Therapy. 2001;8:1264–1270. doi: 10.1038/sj.gt.3301522. PubMed DOI
Gollins H, McMahon J, Wells KE, Wells DJ. High-efficiency plasmid gene transfer into dystrophic muscle. Gene Therapy. 2003;10:504–512. doi: 10.1038/sj.gt.3301927. PubMed DOI
Schertzer JD, Plant DR, Lynch GS. Optimizing plasmid-based gene transfer for investigating skeletal muscle structure and function. Molecular Therapy. 2006;13:795–803. doi: 10.1016/j.ymthe.2005.09.019. PubMed DOI
Schmalbruch H, Lewis DM. Dynamics of nuclei of muscle fibers and connective tissue cells in normal and denervated rat muscles. Muscle & Nerve. 2000;23:617–626. doi: 10.1002/(SICI)1097-4598(200004)23:4<617::AID-MUS22>3.0.CO;2-Y. PubMed DOI
Hartikka J, Bozoukova V, Ferrari M, Sukhu L, Enas J, Sawdey M, Wloch MK, Tonsky K, Norman J, Manthorpe M, Wheeler CJ. Vaxfectin enhances the humoral immune response to plasmid DNA-encoded antigens. Vaccine. 2001;19:1911–1923. doi: 10.1016/S0264-410X(00)00445-X. PubMed DOI
Reyes L, Hartikka J, Bozoukova V, Sukhu L, Nishioka W, Singh G, Ferrari M, Enas J, Wheeler CJ, Manthorpe M, Wloch MK. Vaxfectin enhances antigen specific antibody titers and maintains Th1 type immune responses to plasmid DNA immunization. Vaccine. 2001;19:3778–3786. doi: 10.1016/S0264-410X(01)00090-1. PubMed DOI
Gregoriadis G, Bacon A, Caparros-Wanderley W, McCormack B. A role for liposomes in genetic vaccination. Vaccine. 2002;20:B1–B9. doi: 10.1016/S0264-410X(02)00514-5. PubMed DOI