Bootstrapping multifractals: surrogate data from random cascades on wavelet dyadic trees
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
- Publikační typ
- časopisecké články MeSH
A method for random resampling of time series from multiscale processes is proposed. Bootstrapped series--realizations of surrogate data obtained from random cascades on wavelet dyadic trees--preserve the multifractal properties of input data, namely, interactions among scales and nonlinear dependence structures. The proposed approach opens the possibility for rigorous Monte Carlo testing of nonlinear dependence within, with, between, or among time series from multifractal processes.
Citace poskytuje Crossref.org