Differential role of passerine birds in distribution of Borrelia spirochetes, based on data from ticks collected from birds during the postbreeding migration period in Central Europe
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
19060160
PubMed Central
PMC2632145
DOI
10.1128/aem.01674-08
PII: AEM.01674-08
Knihovny.cz E-zdroje
- MeSH
- bakteriální proteiny genetika MeSH
- Borrelia klasifikace izolace a purifikace MeSH
- DNA bakterií chemie genetika MeSH
- klíště mikrobiologie MeSH
- lymeská nemoc přenos veterinární MeSH
- mezerníky ribozomální DNA chemie genetika MeSH
- molekulární sekvence - údaje MeSH
- nemoci ptáků mikrobiologie MeSH
- Passeriformes mikrobiologie MeSH
- ribozomální DNA chemie genetika MeSH
- sekvenční analýza DNA MeSH
- zdroje nemoci mikrobiologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Česká republika MeSH
- Názvy látek
- bakteriální proteiny MeSH
- DNA bakterií MeSH
- mezerníky ribozomální DNA MeSH
- ribozomální DNA MeSH
Borrelia spirochetes in bird-feeding ticks were studied in the Czech Republic. During the postbreeding period (July to September 2005), 1,080 passerine birds infested by 2,240 Ixodes ricinus subadult ticks were examined. Borrelia garinii was detected in 22.2% of the ticks, Borrelia valaisiana was detected in 12.8% of the ticks, Borrelia afzelii was detected in 1.6% of the ticks, and Borrelia burgdorferi sensu stricto was detected in 0.3% of the ticks. After analysis of infections in which the blood meal volume and the stage of the ticks were considered, we concluded that Eurasian blackbirds (Turdus merula), song thrushes (Turdus philomelos), and great tits (Parus major) are capable of transmitting B. garinii; that juvenile blackbirds and song thrushes are prominent reservoirs for B. garinii spirochetes; that some other passerine birds investigated play minor roles in transmitting B. garinii; and that the presence B. afzelii in ticks results from infection in a former stage. Thus, while B. garinii transmission is associated with only a few passerine bird species, these birds have the potential to distribute millions of Lyme disease spirochetes between urban areas.
Zobrazit více v PubMed
Black, W. C., IV, and R. L. Roehrdanz. 1998. Mitochondrial gene order is not conserved in arthropods: prostriate and metastriate tick mitochondrial genomes. Mol. Biol. Evol. 15:1772-1785. PubMed
Busch, U., C. Hizo-Teufel, R. Bohmer, V. Fingerle, D. Rossler, B. Wilske, and V. Preac-Mursic. 1996. Borrelia burgdorferi sensu lato strains isolated from cutaneous Lyme borreliosis biopsies differentiated by pulsed-field gel electrophoresis. Scand. J. Infect. Dis. 28:583-589. PubMed
Comstedt, P., S. Bergstrom, B. Olsen, U. Garpmo, L. Marjavaara, H. Mejlon, A. G. Barbour, and J. Bunikis. 2006. Migratory passerine birds as reservoirs of Lyme borreliosis in Europe. Emerg. Infect. Dis. 12:1087-1095. PubMed PMC
Demaerschalck, I., A. Ben Messaoud, M. De Kesel, B. Hoyois, Y. Lobet, P. Hoet, G. Bigaignon, A. Bollen, and E. Godfroid. 1995. Simultaneous presence of different Borrelia burgdorferi genospecies in biological fluids of Lyme disease patients. J. Clin. Microbiol. 33:602-608. PubMed PMC
Floris, R., G. Menardi, R. Bressan, G. Trevisan, S. Ortenzio, E. Rorai, and M. Cinco. 2007. Evaluation of a genotyping method based on the ospA gene to detect Borrelia burgdorferi sensu lato in multiple samples of Lyme borreliosis patients. New Microbiol. 30:399-410. PubMed
Fukunaga, M., K. Okada, M. Nakao, T. Konishi, and Y. Sato. 1996. Phylogenetic analysis of Borrelia species based on flagellin gene sequences and its application for molecular typing of Lyme disease borreliae. Int. J. Syst. Bacteriol. 46:898-905. PubMed
Gern, L., and P. F. Humair. 1998. Natural history of Borrelia burgdorferi sensu lato. Wien. Klin. Wochenschr. 110:856-858. PubMed
Guy, E. C., and G. Stanek. 1991. Detection of Borrelia burgdorferi in patients with Lyme disease by the polymerase chain reaction. J. Clin. Pathol. 44:610-611. PubMed PMC
Gylfe, A., S. Bergstrom, J. Lundstrom, and B. Olsen. 2000. Reactivation of Borrelia infection in birds. Nature 403:724-725. PubMed
Hanincova, K., V. Taragelova, J. Koci, S. M. Schafer, R. Hails, A. J. Ullmann, J. Piesman, M. Labuda, and K. Kurtenbach. 2003. Association of Borrelia garinii and B. valaisiana with songbirds in Slovakia. Appl. Environ. Microbiol. 69:2825-2830. PubMed PMC
Hudec, K. 2003. Fauna ČSSR, Ptáci. Aves III/2. Academia, Prague, Czech Republic.
Jaenson, T. G. 1991. The epidemiology of Lyme borreliosis. Parasitol. Today 7:39-45. PubMed
Kipp, S., A. Goedecke, W. Dorn, B. Wilske, and V. Fingerle. 2006. Role of birds in Thuringia, Germany, in the natural cycle of Borrelia burgdorferi sensu lato, the Lyme disease spirochaete. Int. J. Med. Microbiol. 296(Suppl. 40):125-128. PubMed
Kulich, P., E. Roubalova, L. Dubska, O. Sychra, B. Smid, and I. Literak. 2008. Avipoxvirus in blackcaps (Sylvia atricapilla). Avian Pathol. 37:101-107. PubMed
Kurtenbach, K., D. Carey, A. N. Hoodless, P. A. Nuttall, and S. E. Randolph. 1998. Competence of pheasants as reservoirs for Lyme disease spirochetes. J. Med. Entomol. 35:77-81. PubMed
Kurtenbach, K., M. Peacey, S. G. Rijpkema, A. N. Hoodless, P. A. Nuttall, and S. E. Randolph. 1998. Differential transmission of the genospecies of Borrelia burgdorferi sensu lato by game birds and small rodents in England. Appl. Environ. Microbiol. 64:1169-1174. PubMed PMC
Kurtenbach, K., H. S. Sewell, N. H. Ogden, S. E. Randolph, and P. A. Nuttall. 1998. Serum complement sensitivity as a key factor in Lyme disease ecology. Infect. Immun. 66:1248-1251. PubMed PMC
Kurtenbach, K., S. M. Schafer, H. S. Sewell, M. Peacey, A. Hoodless, P. A. Nuttall, and S. E. Randolph. 2002. Differential survival of Lyme borreliosis spirochetes in ticks that feed on birds. Infect. Immun. 70:5893-5895. PubMed PMC
Landys, M. M., J. C. Wingfield, and M. Ramenofsky. 2004. Plasma corticosterone increases during migratory restlessness in the captive white-crowned sparrow Zonotrichia leucophrys gambelli. Horm. Behav. 46:574-581. PubMed
Lee, K. A., M. Wikelski, W. D. Robinson, T. R. Robinson, and K. C. Klasing. 2008. Constitutive immune defences correlate with life-history variables in tropical birds. J. Anim. Ecol. 77:356-363. PubMed
Magnarelli, L. A., J. F. Anderson, and D. Fish. 1987. Transovarial transmission of Borrelia burgdorferi in Ixodes dammini (Acari:Ixodidae). J. Infect. Dis. 156:234-236. PubMed
Majlathova, V., I. Majlath, M. Derdakova, B. Vichova, and B. Pet'ko. 2006. Borrelia lusitaniae and green lizards (Lacerta viridis), Karst region, Slovakia. Emerg. Infect. Dis. 12:1895-1901. PubMed PMC
Masuzawa, T., I. G. Kharitonenkov, T. Kadosaka, N. Hashimoto, M. Kudeken, N. Takada, K. Kaneda, and Y. Imai. 2005. Characterization of Borrelia burgdorferi sensu lato isolated in Moscow province—a sympatric region for Ixodes ricinus and Ixodes persulcatus. Int. J. Med. Microbiol. 294:455-464. PubMed
Matson, K. D., B. I. Tieleman, and K. C. Klasing. 2006. Capture stress and the bactericidal competence of blood and plasma in five species of tropical birds. Physiol. Biochem. Zool. 79:556-564. PubMed
Morshed, M. G., J. D. Scott, K. Fernando, L. Beati, D. F. Mazerolle, G. Geddes, and L. A. Durden. 2005. Migratory songbirds disperse ticks across Canada, and first isolation of the Lyme disease spirochete, Borrelia burgdorferi, from the avian tick, Ixodes auritulus. J. Parasitol. 91:780-790. PubMed
Ogden, N. H., P. A. Nuttall, and S. E. Randolph. 1997. Natural Lyme disease cycles maintained via sheep by co-feeding ticks. Parasitology 115:591-599. PubMed
Piesman, J., and C. M. Happ. 2001. The efficacy of co-feeding as a means of maintaining Borrelia burgdorferi: a North American model system. J. Vector Ecol. 26:216-220. PubMed
Rand, P. W., E. H. Lacombe, R. P. Smith, Jr., and J. Ficker. 1998. Participation of birds (Aves) in the emergence of Lyme disease in southern Maine. J. Med. Entomol 35:270-276. PubMed
Rappole, J. H., S. R. Derrickson, and Z. Hubalek. 2000. Migratory birds and spread of West Nile virus in the Western Hemisphere. Emerg. Infect. Dis. 6:319-328. PubMed PMC
Rauter, C., and T. Hartung. 2005. Prevalence of Borrelia burgdorferi sensu lato genospecies in Ixodes ricinus ticks in Europe: a metaanalysis. Appl. Environ. Microbiol. 71:7203-7216. PubMed PMC
Reed, K. D., J. K. Meece, J. S. Henkel, and S. K. Shukla. 2003. Birds, migration and emerging zoonoses: West Nile virus, Lyme disease, influenza A and enteropathogens. Clin. Med. Res. 1:5-12. PubMed PMC
Richter, D., and F. R. Matuschka. 2006. Perpetuation of the Lyme disease spirochete Borrelia lusitaniae by lizards. Appl. Environ. Microbiol. 72:4627-4632. PubMed PMC
Richter, D., D. Postic, N. Sertour, I. Livey, F. R. Matuschka, and G. Baranton. 2006. Delineation of Borrelia burgdorferi sensu lato species by multilocus sequence analysis and confirmation of the delineation of Borrelia spielmanii sp. nov. Int. J. Syst. Evol Microbiol. 56:873-881. PubMed
Stastny, K., V. Bejcek, and K. Hudec. 2006. Atlas hnizdniho rozsireni ptaku v Ceské republice 2001-2003. Aventinum, Prague, Czech Republic. (In Czech with English summary.)
Taragel'ova, V., J. Koci, K. Hanincova, K. Kurtenbach, M. Derdakova, N. H. Ogden, I. Literak, E. Kocianova, and M. Labuda. 2008. Blackbirds and song thrushes constitute a key reservoir of Borrelia garinii, the causative agent of borreliosis in Central Europe. Appl. Environ. Microbiol. 74:1289-1293. PubMed PMC
van der Heijden, I. M., B. Wilbrink, S. G. Rijpkema, L. M. Schouls, P. H. Heymans, J. D. van Embden, F. C. Breedveld, and P. P. Tak. 1999. Detection of Borrelia burgdorferi sensu stricto by reverse line blot in the joints of Dutch patients with Lyme arthritis. Arthritis Rheum. 42:1473-1480. PubMed
Wright, S. A., D. A. Lemenager, J. R. Tucker, M. V. Armijos, and S. A. Yamamoto. 2006. An avian contribution to the presence of Ixodes pacificus (Acari: Ixodidae) and Borrelia burgdorferi on the Sutter Buttes of California. J. Med. Entomol. 43:368-374. PubMed
GENBANK
EU401776, EU401777, EU401778, EU401779, EU401780, EU401781, EU401782, EU401783, EU401784