Role of the bacteriophage lambda exo-xis region in the virus development
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
- MeSH
- bakteriofág lambda genetika růst a vývoj fyziologie MeSH
- bakteriolýza MeSH
- DNA-nukleotidyltransferasy * chemie genetika MeSH
- Escherichia coli virologie MeSH
- exodeoxyribonukleasy * chemie genetika MeSH
- lyzogenie MeSH
- mutace MeSH
- plakové testy MeSH
- regulace exprese virových genů * MeSH
- virové proteiny chemie genetika metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA-nukleotidyltransferasy * MeSH
- excisionase MeSH Prohlížeč
- exo protein, Bacteriophage lambda MeSH Prohlížeč
- exodeoxyribonukleasy * MeSH
- virové proteiny MeSH
Various processes of bacteriophage lambda development in Escherichia coli cells bearing either the whole lambda exo-xis region (with truncated, thus nonfunctional, exo and xis genes) or particular genes from this region were investigated. The presence of either the exo-xis region or the ea8.5 gene on a plasmid resulted in formation of fuzzy plaques by infecting phage. Both efficiency of plating and efficiency of lysogenization were decreased in such hosts. On the other hand, neither the efficiency of adsorption nor intracellular lytic development of the infecting phage (measured in one-step-growth experiments) was affected while significantly more host cells survived the infection, when containing the exo-xis region. Although no effects of the exo-xis region on the activity of the p (L) promoter was detected, this region contributed to a decreased transcription from the cII-stimulated promoters p (I), p (aQ) and p (E). These results, together with the results of measurement of efficiency of plating of phages bearing mutations in cI, cII and cIII genes on hosts containing the exo-xis region, strongly suggest that genes from this region (especially ea8.5) are involved in the regulation of bacteriophage lambda development at the stage of the lysis-vs.-lysogenization decision.
Zobrazit více v PubMed
BMC Biotechnol. 2007 Feb 26;7:13 PubMed
J Bacteriol. 1993 Jun;175(11):3401-7 PubMed
Biochimie. 1974;56(11-12):1517-23 PubMed
Methods Enzymol. 1979;68:245-67 PubMed
Gene. 1992 Dec 1;122(1):1-7 PubMed
Gene. 1995 Nov 7;165(1):141-2 PubMed
Mol Microbiol. 1997 Jan;23(2):211-22 PubMed
Virology. 1969 May;38(1):200-2 PubMed
Virology. 1999 Sep 30;262(2):431-41 PubMed
Virus Genes. 2001 Mar;22(2):127-32 PubMed
Mol Microbiol. 2003 Mar;47(6):1669-79 PubMed
J Mol Biol. 1989 Sep 5;209(1):55-64 PubMed
Genetics. 1995 Apr;139(4):1469-81 PubMed
J Mol Biol. 1980 Apr;138(2):179-207 PubMed
Prog Nucleic Acid Res Mol Biol. 2005;79:1-48 PubMed
Virology. 2003 Sep 1;313(2):622-8 PubMed
J Virol. 1972 Mar;9(3):510-8 PubMed
Curr Opin Microbiol. 2001 Apr;4(2):201-7 PubMed
Virology. 1978 Jul 15;88(2):199-212 PubMed
Acta Biochim Pol. 1998;45(1):271-80 PubMed
Mol Gen Genet. 1997 Apr 16;254(3):304-11 PubMed
J Mol Biol. 2002 Nov 22;324(2):297-307 PubMed
J Bacteriol. 1986 Jul;167(1):415-9 PubMed