Temporal analysis of ectopic enamel production in incisors from sprouty mutant mice
Language English Country United States Media print
Document type Journal Article, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov't
Grant support
K08 DE017654
NIDCR NIH HHS - United States
K08-DE017654
NIDCR NIH HHS - United States
PubMed
19101957
PubMed Central
PMC2837846
DOI
10.1002/jez.b.21254
Knihovny.cz E-resources
- MeSH
- Adaptor Proteins, Signal Transducing MeSH
- Ameloblasts cytology physiology MeSH
- Embryonic Development MeSH
- Genotype MeSH
- Intracellular Signaling Peptides and Proteins MeSH
- Membrane Proteins deficiency genetics MeSH
- Mice, Mutant Strains genetics MeSH
- Mice, Knockout MeSH
- Mice MeSH
- Protein Serine-Threonine Kinases MeSH
- Nerve Tissue Proteins deficiency MeSH
- Incisor growth & development MeSH
- Mouth Mucosa cytology physiology MeSH
- Dental Enamel embryology growth & development MeSH
- Animals MeSH
- Check Tag
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, N.I.H., Extramural MeSH
- Names of Substances
- Adaptor Proteins, Signal Transducing MeSH
- Intracellular Signaling Peptides and Proteins MeSH
- Membrane Proteins MeSH
- Protein Serine-Threonine Kinases MeSH
- Nerve Tissue Proteins MeSH
- Spry2 protein, mouse MeSH Browser
- Spry4 protein, mouse MeSH Browser
The mouse incisor has two unusual features: it grows continuously and it is covered by enamel exclusively on the labial side. The continuous growth is driven in part by epithelial stem cells in the cervical loop region that can both self-renew and give rise to ameloblasts. We have previously reported that ectopic enamel is found on the lingual side of the incisor in mice with loss-of-function of sprouty (spry) genes. Spry2(+/-); Spry4(-/-) mice, in which three sprouty alleles have been inactivated, have ectopic enamel as a result of upregulation of epithelial-mesenchymal FGF signaling in the lingual part of the cervical loop. Interestingly, lingual enamel is also present in the early postnatal period in Spry4(-/-) mice, in which only two sprouty alleles have been inactivated, but ectopic enamel is not found in adults of this genotype. To explore the mechanisms underlying the disappearance of lingual enamel in Spry4(-/-) adults, we studied the fate of the lingual enamel in Spry4(-/-) mice by comparing the morphology and growth of their lower incisors with wild type and Spry2(+/-); Spry4(-/-) mice at several timepoints between the perinatal period and adulthood. Ameloblasts and enamel were detected on the lingual side in postnatal Spry2(+/-); Spry4(+/-) incisors. By contrast, new ectopic ameloblasts ceased to differentiate after postnatal day 3 in Spry4(-/-) incisors, which was followed by a progressive loss of lingual enamel. Both the posterior extent of lingual enamel and the time of its last deposition were variable early postnatally in Spry4(-/-) incisors, but in all Spry4(-/-) adult incisors the lingual enamel was ultimately lost through continuous growth and abrasion of the incisor.
See more in PubMed
Amar S, Luo W, Snead ML, Ruch JV. Amelogenin gene expression in mouse incisor heterotopic recombinations. Differentiation. 1989;41:56–61. PubMed
Coady JM, Toto PD, Santangelo MV. Histology of the mouse incisor. J Dent Res. 1967;46:384–388. PubMed
Coin R, Haikel Y, Ruch JV. Effects of apatite, transforming growth factor beta-1, bone morphogenetic protein-2 and interleukin-7 on ameloblast differentiation in vitro. Eur J Oral Sci. 1999;107:487–495. PubMed
Hacohen N, Kramer S, Sutherland D, Hiromi Y, Krasnow MA. Sprouty encodes a novel antagonist of FGF signaling that patterns apical branching of the Drosophila airways. Cell. 1998;92:253–263. PubMed
Harada H, Kettunen P, Jung HS, Mustonen T, Wang YA, Thesleff I. Localization of putative stem cells in dental epithelium and their association with Notch and FGF signaling. J Cell Biol. 1999;147:105–120. PubMed PMC
Harada H, Toyono T, Toyoshima K, Yamasaki M, Itoh N, Kato S, Sekine K, Ohuchi H. FGF10 maintains stem cell compartment in developing mouse incisors. Development. 2002;129:1533–1541. PubMed
Karcher-Djuricic V, Staubli A, Meyer JM, Ruch JV. Acellular dental matrices promote functional differentiation of ameloblasts. Differentiation. 1985;29:169–175. PubMed
Kieffer S, Peterkova R, Vonesch JL, Ruch JV, Peterka M, Lesot H. Morphogenesis of the lower incisor in the mouse from the bud to early bell stage. Int J Dev Biol. 1999;43:531–539. PubMed
Klein OD, Lyons DB, Balooch G, Marshall GW, Basson MA, Peterka M, Boran T, Peterkova R, Martin GR. An FGF signaling loop sustains the generation of differentiated progeny from stem cells in mouse incisors. Development. 2008;135:377–385. PubMed PMC
Lesot H, Vonesch JL, Peterka M, Tureckova J, Peterkova R, Ruch JV. Mouse molar morphogenesis revisited by three-dimensional reconstruction. II. Spatial distribution of mitoses and apoptosis in cap to bell staged first and second upper molar teeth. Int J Dev Biol. 1996;40:1017–1031. PubMed
Mallory FB. Pathological technique. Philadelphia: W. B. Saunders Co.; 1942. p. 154.
Meyer JM, Bodier-Houlle P, Cuisinier FJ, Lesot H, Ruch JV. Initial aspects of mineralization at the dentino-enamel junction in embryonic mouse incisor in vivo and in vitro: a tem comparative study. In Vitro Cell Dev Biol Anim. 1999;35:159–168. PubMed
Nadiri A, Kuchler-Bopp S, Haikel Y, Lesot H. Immunolocalization of BMP-2/-4, FGF-4, and WNT10b in the developing mouse first lower molar. J Histochem Cytochem. 2004;52:103–112. PubMed
Shim K, Minowada G, Coling DE, Martin GR. Sprouty2, a mouse deafness gene, regulates cell fate decisions in the auditory sensory epithelium by antagonizing FGF signaling. Dev Cell. 2005;8:553–564. PubMed
Smith CE, Warshawsky H. Histological and three dimensional organization of the odontogenic organ in the lower incisor of 100 gram rats. Am J Anat. 1975;142:403–429. PubMed
Wang XP, Suomalainen M, Felszeghy S, Zelarayan LC, Alonso MT, Plikus MV, Maas RL, Chuong CM, Schimmang T, Thesleff I. An integrated gene regulatory network controls stem cell proliferation in teeth. PLoS Biol. 2007;5:e159. PubMed PMC
Warshawsky H, Smith CE. Morphological classification of rat incisor ameloblasts. Anat Rec. 1974;179:423–446. PubMed
Woltgens JH, Lyaruu DM, Bronckers AL, Bervoets TJ, Van Duin M. Biomineralization during early stages of the developing tooth in vitro with special reference to secretory stage of amelogenesis. Int J Dev Biol. 1995;39:203–212. PubMed
Zeichner-David M, Diekwisch T, Fincham A, Lau E, MacDougall M, Moradian-Oldak J, Simmer J, Snead M, Slavkin HC. Control of ameloblast differentiation. Int J Dev Biol. 1995;39:69–92. PubMed
The Development of Dentin Microstructure Is Controlled by the Type of Adjacent Epithelium