• This record comes from PubMed

Predictors of left ventricular remodelling and failure in right ventricular pacing in the young

. 2009 May ; 30 (9) : 1097-104. [epub] 20090312

Language English Country Great Britain, England Media print-electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

AIMS: To identify risk factors for left ventricular (LV) dysfunction in right ventricular (RV) pacing in the young. methods and results: Left ventricular function was evaluated in 82 paediatric patients with either non-surgical (n = 41) or surgical (n= 41) complete atrioventricular block who have been 100% RV paced for a mean period of 7.4 years. Left ventricular shortening fraction (SF) decreased from a median (range) of 39 (24-62)% prior to implantation to 32 (8-49)% at last follow-up (P < 0.05). Prevalence of a combination of LV dilatation (LV end-diastolic diameter >+2z-values) and dysfunction (SF < 0.26) was found to increase from 1.3% prior to pacemaker implantation to 13.4% (11/82 patients) at last follow-up (P = 0.01). Ten of these 11 patients had progressive LV remodelling and 8 of 11 were symptomatic. The only significant risk factor for the development of LV dilatation and dysfunction was the presence of epicardial RV free wall pacing (OR = 14.3, P < 0.001). Other pre-implantation demographic, diagnostic, and haemodynamic factors including block aetiology, pacing variables, and pacing duration did not show independent significance. CONCLUSION: Right ventricular pacing leads to pathologic LV remodelling in a significant proportion of paediatric patients. The major independent risk factor is the presence of epicardial RV free wall pacing, which should be avoided whenever possible.

Comment In

PubMed

See more in PubMed

Thambo JB, Bordachar P, Garrigue S, Lafitte S, Sanders P, Reuter S, Girardot R, Crepin D, Reant P, Roudaut R, Jais P, Haissaguerre M, Clementy J, Jimenez M. Detrimental ventricular remodeling in patients with congenital complete heart block and chronic right ventricular apical pacing. Circulation. 2004;110:3766–3772. PubMed

Sweeney MO, Hellkamp AS, Ellenbogen KA, Greenspon AJ, Freedman RA, Lee KL, Lamas GA. Mode Selection Trial Investigators. Adverse effect of ventricular pacing on heart failure and atrial fibrillation among patients with normal baseline QRS duration in a clinical trial of pacemaker therapy for sinus node dysfunction. Circulation. 2003;107:2932–2937. PubMed

Nielsen JC, Kristensen L, Andersen HR, Mortensen PT, Pedersen OL, Pedersen AK. A randomized comparison of atrial and dual-chamber pacing in 177 consecutive patients with sick sinus syndrome. J Am Coll Cardiol. 2003;42:614–623. PubMed

Wilkoff BL, Cook JR, Epstein AE, Greene HL, Hallstrom AP, Hsia H, Kutalek SP, Sharma A Dual Chamber VVI Implantable Defibrillator Trial Investigators. Dual-chamber pacing or ventricular backup pacing in patients with implantable defibrillator: the Dual Chamber and VVI Implantable Defibrillator (DAVID) trial. J Am Med Assoc. 2002;288:3115–3123. PubMed

Karpawich PP, Rabah R, Haas JE. Altered cardiac histology following apical right ventricular pacing in patients with congenital atrioventricular block. Pacing Clin Electrophysiol. 1999;22:1372–1377. PubMed

Moak JP, Barron KS, Hougen TJ, Wiles HB, Balaji S, Sreeram N, Cohen MH, Nordenberg A, Van Hare GF, Friedman RA, Perez M, Cecchin F, Schneider DS, Nehgme RA, Buyon JP. Congenital heart block: development of late-onset cardiomyopathy, a previously underappreciated sequela. J Am Coll Cardiol. 2001;37:238–242. PubMed

Udink ten Cate FE, Breur JM, Cohen MI, Boramanand N, Kapusta L, Crosson JE, Brenner JI, Lubbers LJ, Friedman AH, Vetter VL, Meijboom EJ. Dilated cardiomyopathy in isolated congenital complete atrioventricular block: early- and long-term risk in children. J Am Coll Cardiol. 2001;37:1129–1134. PubMed

Janousek J, Tomek V, Chaloupecky V, Gebauer RA. Dilated cardiomyopathy associated with dual-chamber pacing in infants: Improvement through either left ventricular cardiac resynchronization or programming the pacemaker off allowing intrinsic normal conduction. J Cardiovasc Electrophysiol. 2004;15:470–474. PubMed

Strieper M, Karpawich P, Frias P, Gooden K, Ketchum D, Fyfe D, Campbell R. Initial experience with cardiac resynchronization therapy for ventricular dysfunction in young patients with surgically operated congenital heart disease. Am J Cardiol. 2004;94:1352–1354. PubMed

Moak JP, Hasbani K, Ramwell C, Freedenberg V, Berger JT, DiRusso G, Callahan P. Dilated cardiomyopathy following right ventricular pacing for AV block in young patients: resolution after upgrading to biventricular pacing systems. J Cardiovasc Electrophysiol. 2006;17:1068–1071. PubMed

Dubin A, Janousek J, Rhee E, Strieper MJ, Cecchin F, Law IH, Shannon KM, Temple J, Rosenthal E, Zimmerman FJ, Davis A, Karpawich PP, Al Ahmad A, Vetter VL, Kertesz NJ, Shah M, Snyder C, Stephenson E, Emmel M, Sanatani S, Kanter R, Batra A, Collins KK. Resynchronization therapy in pediatric and congenital heart disease patients: an international multicenter study. J Am Coll Cardiol. 2005;46:2277–2283. PubMed

Janoušek J, Grollmuss O, Abdul-Khaliq H, Gebauer RA, Rosenthal E, Villain E, Früh A, Blom NA, Happonen J-M, Bauersfeld U, Jacobsen JR, Bink-Boelkens MT, Delhaas T, Papagiannis J, Trigo C, Turner M, Korneyi L, Paul T for the Working Group for Cardiac Dysrhythmias Electrophysiology of the AEPC. Predictors of response to cardiac resynchronization therapy (CRT) in pediatric and congenital heart disease: subanalysis of a retrospective European multicenter study (abstract) Cardiol Young. 2007;17(Suppl. 1):16.

Marek J. Echokardiografie. In: Chaloupecký V, editor. Dětská kardiologie. Prague, Czech Republic: Galen; 2006. p. 62.

Davison AC, Hinkley DV. Bootstrap Methods and their Application. Cambridge: Cambridge University Press; 1997. pp. 11–69. 191–255.

Harrell FE. Regression Modeling Strategies. New York: Springer Science and Business Media; 2001. pp. 215–267.

Kim JJ, Friedman RA, Eidem BW, Cannon BC, Arora G, Smith EO, Fenrich AL, Kertesz NJ. Ventricular function and long-term pacing in children with congenital complete atrioventricular block. J Cardiovasc Electrophysiol. 2007;18:373–377. PubMed

Karpawich PP, Justice CD, Chang CH, Gause CY, Kuhns LR. Septal ventricular pacing in the immature canine heart: a new perspective. Am Heart J. 1991;121:827–833. PubMed

Karpawich PP, Mital S. Comparative left ventricular function following atrial, septal, and apical single chamber heart pacing in the young. PACE. 1997;20:1883–1888. PubMed

Karpawich PP, Horenstein MS, Webster P. Site specific right ventricular implant pacing to optimize paced left ventricular function in the young with and without congenital heart (abstr) PACE. 2002;25:566.

Tse HF, Yu C, Wong KK, Tsang V, Leung YL, Ho WY, Lau CP. Functional abnormalities in patients with permanent right ventricular pacing: the effect of sites of electrical stimulation. J Am Coll Cardiol. 2002;40:1451–1458. PubMed

Vanagt WY, Verbeek XA, Delhaas T, Mertens L, Daenen WJ, Prinzen FW. The left ventricular apex is the optimal site for pediatric pacing: correlation with animal experience. PACE. 2004;27:837–843. PubMed

Vanagt WY, Verbeek XA, Delhaas T, Gewillig M, Mertens L, Wouters P, Meyns B, Daenen WJ, Prinzen FW. Acute hemodynamic benefit of left ventricular apex pacing in children. Ann Thorac Surg. 2005;79:932–936. PubMed

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...