2021 PACES expert consensus statement on the indications and management of cardiovascular implantable electronic devices in pediatric patients
Status PubMed-not-MEDLINE Jazyk angličtina Země Nizozemsko Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
UL1 TR001863
NCATS NIH HHS - United States
PubMed
34333141
PubMed Central
PMC8577100
DOI
10.1016/j.ipej.2021.07.005
PII: S0972-6292(21)00115-7
Knihovny.cz E-zdroje
- Klíčová slova
- Ambulatory ECG monitoring, Antiarrhythmic drug therapy, Antitachycardia pacing, Arrhythmogenic cardiomyopathy, Arrhythmogenic right ventricular cardiomyopathy, Asystole, Atrioventricular block, Bradycardia, Brugada syndrome, Cardiac channelopathies, Cardiac transplantation, Cardiomyopathy, Cardiovascular implantable electronic devices, Catecholaminergic polymorphic ventricular tachycardia, Children, Congenital heart disease, Coronary artery compression, ECG, Echocardiography, Endocardial lead, Epicardial lead, Expert consensus statement, Genetic arrhythmias, Heart block, Heart failure, Hypertrophic cardiomyopathy, Implantable cardioverter defibrillator, Insertable cardiac monitor, Lead extraction, Lead removal, Long QT syndrome, Low- and middle-income countries, MR imaging, Neuromuscular disease, PACES, Pacemaker, Pediatrics, Postoperative, Remote monitoring, Shared decision-making, Sick sinus syndrome, Sports and physical activity, Sudden cardiac arrest, Sudden cardiac death, Syncope, Transvenous, Ventricular fibrillation, Ventricular tachycardia,
- Publikační typ
- časopisecké články MeSH
In view of the increasing complexity of both cardiovascular implantable electronic devices (CIEDs) and patients in the current era, practice guidelines, by necessity, have become increasingly specific. This document is an expert consensus statement that has been developed to update and further delineate indications and management of CIEDs in pediatric patients, defined as ≤21 years of age, and is intended to focus primarily on the indications for CIEDs in the setting of specific disease categories. The document also highlights variations between previously published adult and pediatric CIED recommendations and provides rationale for underlying important differences. The document addresses some of the deterrents to CIED access in low- and middle-income countries and strategies to circumvent them. The document sections were divided up and drafted by the writing committee members according to their expertise. The recommendations represent the consensus opinion of the entire writing committee, graded by class of recommendation and level of evidence. Several questions addressed in this document either do not lend themselves to clinical trials or are rare disease entities, and in these instances recommendations are based on consensus expert opinion. Furthermore, specific recommendations, even when supported by substantial data, do not replace the need for clinical judgment and patient-specific decision-making. The recommendations were opened for public comment to Pediatric and Congenital Electrophysiology Society (PACES) members and underwent external review by the scientific and clinical document committee of the Heart Rhythm Society (HRS), the science advisory and coordinating committee of the American Heart Association (AHA), the American College of Cardiology (ACC), and the Association for European Paediatric and Congenital Cardiology (AEPC). The document received endorsement by all the collaborators and the Asia Pacific Heart Rhythm Society (APHRS), the Indian Heart Rhythm Society (IHRS), and the Latin American Heart Rhythm Society (LAHRS). This document is expected to provide support for clinicians and patients to allow for appropriate CIED use, appropriate CIED management, and appropriate CIED follow-up in pediatric patients.
Advocate Children's Heart Institute Chicago IL USA
Amrita Institute of Medical Sciences Kochi India
Bambino Gesù Children's Hospital IRCCS Rome Italy
Baylor College of Medicine Houston TX USA
Bristol Royal Hospital for Children Bristol United Kingdom
Georg August University Medical Center Göttingen Germany
George Washington University Washington DC USA
Harvard Medical School Boston MA USA
Heart Centre Leipzig University of Leipzig Leipzig Germany
Inova Children's Hospital Fairfax VA USA
New York University Grossman School of Medicine New York NY USA
New York University Langone Health New York NY USA
Nicklaus Children's Hospital Miami FL USA
Oregon Health and Science University Portland OR USA
Shizuoka General Hospital and Mt Fuji Shizuoka Children's Hospital Shizuoka Japan
St Luke's Health System Boise ID USA
Stanford University Palo Alto CA USA
The Hospital for Sick Children Toronto Canada
University of Michigan Ann Arbor MI USA
University of Missouri Kansas City School of Medicine Kansas City MO USA
University of Pennsylvania Perelman School of Medicine Philadelphia PA USA
University of Southern California Keck School of Medicine Los Angeles CA USA
University of Utah Health Sciences Center Salt Lake City UT USA
University of Wisconsin School of Medicine and Public Health Madison WI USA
University Pediatricians Children's Hospital of Michigan Detroit MI USA
Vanderbilt University Medical Center Nashville TN USA
Zobrazit více v PubMed
Frye R.L., Collins J.J., DeSanctis R.W. Guidelines for permanent pacemaker implantation, 1984. A report of the joint American college of Cardiology/American heart association task force on assessment of cardiovascular procedures (subcommittee on pacemaker implantation) Circulation. 1984;70:331A–339A. PubMed
Kusumoto F.M., Schoenfeld M.H., Barrett C. 2018 ACC/AHA/HRS guideline on the evaluation and management of patients with bradycardia and cardiac conduction delay: a report of the American college of Cardiology/American heart association task force on clinical practice guidelines, and the heart rhythm society. J Am Coll Cardiol. 2019;74:932–987. PubMed
Levine G.N., O'Gara P.T., Beckman J.A. Recent innovations, modifications, and evolution of ACC/AHA clinical practice guidelines: an update for our constituencies: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation. 2019;139:e879–e886. PubMed
Halperin J.L., Levine G.N., Al-Khatib S.M. Further evolution of the ACC/AHA clinical practice guideline recommendation classification system: a report of the American college of Cardiology/American heart association task force on clinical practice guidelines. J Am Coll Cardiol. 2016;67:1572–1574. PubMed
Kusumoto F.M., Calkins H., Boehmer J. HRS/ACC/AHA expert consensus statement on the use of implantable cardioverter-defibrillator therapy in patients who are not included or not well represented in clinical trials. Circulation. 2014;130:94–125. PubMed
Epstein A.E., Dimarco J.P., Ellenbogen K.A. ACC/AHA/HRS 2008 guidelines for device-based therapy of cardiac rhythm abnormalities. Heart Rhythm. 2008;5:934–955. PubMed
Tracy C.M., Epstein A.E., Darbar D. ACCF/AHA/HRS focused update of the 2008 guidelines for device-based therapy of cardiac rhythm abnormalities. Heart Rhythm. 2012;9:1737–1753. 2012. PubMed
Hernández-Madrid A., Paul T., Abrams D. Arrhythmias in congenital heart disease. A position paper of the European heart rhythm association, association for European paediatric and congenital Cardiology (AEPC), and the European society of Cardiology (ESC) working group on grown-up congenital heart disease. Europace. 2018;20:1719–1753. PubMed
Khairy P., Van Hare G.F., Balaji S. 2014 PACES/HRS expert consensus statement on the recognition and management of arrhythmias in adult congenital heart disease. Heart Rhythm. 2014;11:e102–e165. PubMed
Brignole M., Auricchio A., Baron-Esquivias G. ESC Guidelines on cardiac pacing and cardiac resynchronization therapy: the Task Force on cardiac pacing and resynchronization therapy of the European Society of Cardiology (ESC). Developed in collaboration with the European Heart Rhythm Association (EHRA) Europace. 2013;15:1070–1118. 2013. PubMed
Shen W.K., Sheldon R.S., Benditt D.G. ACC/AHA/HRS guidelines for the evaluation and management of patients with syncope. Circulation. 2017;136:e60–e122. 2017. PubMed
Al-Khatib SM, Stevenson WG, Ackerman MJ, et al. 2017 AHA/ACC/HRS guideline for management of patients with ventricular arrhythmias and the prevention of sudden cardiac death. J Am Coll Cardiol 2018;72:1677–1749. PubMed
Priori S.G., Blomström-Lundqvist C., Mazzanti A. ESC guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death. Eur Heart J. 2015;36:2793–2867. 2015. PubMed
Priori S.G., Wilde A.A., Horie M. HRS/EHRA/APHRS expert consensus statement on the diagnosis and management of patients with inherited primary arrhythmia syndromes. Heart Rhythm. 2013;10:1932–1963. 2013. PubMed
Ommen S.R., Mital S., Burke M.A. AHA/ACC guideline for the diagnosis and treatment of patients with hypertrophic cardiomyopathy: a report of the American college of Cardiology/American heart association joint committee on clinical practice guidelines. Circulation. 2020;142:e558–e631. 2020. PubMed
Towbin J.A., McKenna W.J., Abrams D.J. HRS expert consensus statement on evaluation, risk stratification, and management of arrhythmogenic cardiomyopathy. Heart Rhythm. 2019;16:e301–e372. 2019. PubMed
Kirk R., Dipchand A.I., Rosenthal D.N. The International Society for Heart and Lung Transplantation guidelines for the management for pediatric heart failure. J Heart Lung Transplant. 2014;33:888–909. 2014. PubMed
Kusumoto F.M., Schoenfeld M.H., Wilkoff B.L. HRS expert consensus statement on cardiovascular implantable electronic device lead management and extraction. Heart Rhythm. 2017;14:e503–e551. 2017. PubMed
Indik J.H., Gimbel J.R., Abe H. HRS expert consensus statement on magnetic resonance imaging and radiation exposure in patients with cardiovascular implantable electronic devices. Heart Rhythm. 2017;14:e97–e153. 2017. PubMed
Chang P.M., Carter C., Bar-Cohen Y. In: Cardiac pacing and defibrillation in pediatric and congenital heart disease. Shah M., Rhodes L., Kaltman J., editors. John Wiley and Sons Ltd; West Sussex, UK: 2017. Indications for permanent pacing, device and lead selection; pp. 37–61.
Weindling S., Saul J., Triedman J. Staged pacing therapy for congenital complete heart block in premature infants. Am J Cardiol. 1994;74:412–413. PubMed
Moore J.P., Shannon K.M. Transpulmonary atrial pacing: an approach to transvenous pacemaker implantation after extracardiac conduit Fontan surgery. J Cardiovasc Electrophysiol. 2014;25:1028–1031. PubMed
Breivik K., Ohm O.J., Segadal L. Sick sinus syndrome treated with permanent pacemaker in 109 patients: a follow-up study. Acta Med Scand. 1979;206:153–159. PubMed
Albin G., Hayes D.L., Holmes D.R., Jr. Sinus node dysfunction in pediatric and young adult patients: treatment by implantation of a permanent pacemaker in 39 cases. Mayo Clin Proc. 1985;60:667–672. PubMed
Gillette P.C., Shannon C., Garson A., Jr. Pacemaker treatment of sick sinus syndrome in children. J Am Coll Cardiol. 1983;1:1325–1329. PubMed
Chiu S.N., Lin L.Y., Wang J.K. Long-term outcomes of pediatric sinus bradycardia. J Pediatr. 2013;163:885–889. PubMed
Reybrouck T., Vangesselen S., Gewillig M. Impaired chronotropic response to exercise in children with repaired cyanotic congenital heart disease. Acta Cardiol. 2009;64:723–727. PubMed
Kardelen F., Celiker A., Ozer S., Ozme S., Oto A. Sinus node dysfunction in children and adolescent: treatment by placement of a permanent pacemaker in 26 patients. Turk J Pediatr. 2002;44:312–316. PubMed
Gillette P.C., Wampler D.R., Shannon C. Use of atrial pacing in a young population. Pacing Clin Electrophysiol. 1985;8:94–100. PubMed
Jaeggi E.T., Hamilton R.M., Silverman E.D. Outcome of children with fetal, neonatal or childhood diagnosis of isolated congenital atrioventricular block. J Am Coll Cardiol. 2002;39:130–137. PubMed
Baruteau A.E., Fouchard S., Behaghel A. Characteristics and long-term outcome of non-immune isolated atrioventricular block diagnosed in utero or early childhood: a multicentre study. Eur Heart J. 2012;33:622–629. PubMed
Balmer C., Fasnacht M., Rahn M. Long-term follow up of children with congenital complete atrioventricular block and the impact of pacemaker therapy. Europace. 2002;4:345–349. PubMed
Michaëlsson M., Engle M.A. Isolated congenital complete atrioventricular block in adult life. Circulation. 1995;92:442–449. PubMed
Michaëlsson M., Engle M.A. Congenital complete heart block; an international study of the natural history. Cardiovasc Clin. 1972;4:85–101. PubMed
Winkler R.B., Freed M.D., Nadas A.S. Exercise induced ventricular ectopy in children and young adults with complete heart block. Am Heart J. 1980;9:87–92. PubMed
Karpawich P.P., Gillette P.C., Garson A., Jr. Congenital complete atrioventricular block: clinical and electrophysiologic predictors of need for pacemaker insertion. Am J Cardiol. 1981;48:1098–1102. PubMed
Pinsky W.W., Gillette P.C., Garson A. Diagnosis, management, and long-term results of patients with congenital complete atrioventricular block. Pediatrics. 1982;69:728–733. PubMed
Dewey R.C., Capeless M.A., Levy A.M. Use of ambulatory electrocardiographic monitoring to identify high-risk patients with congenital complete heart block. N Engl J Med. 1987;316:835–839. PubMed
Benson D.W., Spach M.S., Edwards S.B. Heart block in children. Evaluation of subsidiary ventricular pacemaker recovery times and ECG tape recordings. Pediatr Cardiol. 1982;2:39–45. PubMed
Sholler G.F., Walsh E.P. Congenital complete heart block in patients without anatomic cardiac defects. Am Heart J. 1989;118:1193–1198. PubMed
Kertesz N.J., Friedman R.A., Colan S.D. Left ventricular mechanics and geometry in patients with congenital complete atrioventricular block. Circulation. 1997;96:3430–3435. PubMed
Glatz A.C., Rhodes L.A., Gayno J.W. Outcome of high-risk neonates with congenital complete heart block paced in the first 24 hours after birth. J Thorac Cardiovasc Surg. 2008;136:767–773. PubMed
Moak J.P., Barron K.S., Hougen T.J. Congenital heart block: development of late-onset cardiomyopathy, a previously underappreciated sequela. J Am Coll Cardiol. 2001;37:238–242. PubMed
Janoušek, van Geldorp I.E., Krupičková S. Permanent cardiac pacing in children: choosing the optimal pacing site: a multicenter study. Circulation. 2013;127:613–623. PubMed
Gladman G., Davis A.M., Fogelman R., Hamilton R.M., Gow R.M. Torsade de pointes, acquired complete heart block and inappropriately long QT in childhood. Can J Cardiol. 1996;12:683–685. PubMed
Strasberg B., Kusniec J., Erdman S. Polymorphous ventricular tachycardia and atrioventricular block. Pacing Clin Electrophysiol. 1986;9:522–526. PubMed
Yandrapalli S., Harikrishnan P., Ojo A., Vuddanda V.L.K., Jain D. Exercise induced complete atrioventricular block: utility of exercise stress test. J Electrocardiol. 2018;51:153–155. PubMed
Bonikowske A.R., Barout A., Fortin-Gamero S., Lara M.I.B., Kapa S., Allison T.G. Frequency and characteristics of exercise-induced second-degree atrioventricular block in patients undergoing stress testing. J Electrocardiol. 2019;54:54–60. PubMed
Silver E.S., Pass R.H., Hordof A., Liberman Paroxysmal AV block in children with normal cardiac anatomy as a cause of syncope. Pacing Clin Electrophysiol. 2008;31:322–326. PubMed
Weindling S.N., Saul P.J., Gamble W.J. Duration of complete atrioventricular block after congenital heart disease surgery. Am J Cardiol. 1998;82:525–527. PubMed
Romer A.J., Tabbutt S., Etheridge S.P. Atrioventricular block after congenital heart surgery: analysis from the pediatric cardiac critical care consortium. J Thorac Cardiovasc Surg. 2019;157:1168–1177. PubMed
Aziz P.F., Serwer G.A., Bradley D.J. Pattern of recovery for transient complete heart block after open heart surgery for congenital heart disease: duration alone predicts risk of late complete heart block. Pediatr Cardiol. 2012;34:999–1005. PubMed
Gross G.J., Chiu C.C., Hamilton R.M. Natural history of postoperative heart block in congenital heart disease: implications for pacing intervention. Heart Rhythm. 2006;3:601–604. PubMed
Krongrad E. Prognosis for patients with congenital heart disease and postoperative intraventricular conduction defects. Circulation. 1978;57:867–870. PubMed
Villain E., Ouarda F., Beyler C. Predictive factors for late complete atrio-ventricular block after surgical treatment for congenital cardiomyopathy. Arch Mal Coeur Vaiss. 2003;96:495–498. PubMed
Anderson J.B., Czosek R.J., Knilans T.K. Postoperative heart block in children with common forms of congenital heart disease: results from the KID Database. J Cardiovasc Electrophysiol. 2012;23:1349–1354. PubMed
Ayyildiz P., Kasar T., Ozturk E. Evaluation of permanent or transient complete heart block after open heart surgery for congenital heart disease. Pacing Clin Electrophysiol. 2016;9:160–165. PubMed
Liberman L., Pass R.H., Hordof A.J. Incidence and characteristics of heart block after heart surgery in pediatric patients: a multicenter study. J Thorac Cardiovasc Surg. 2016;152:197–202. PubMed
Huhta J.C., Maloney J.D., Ritter D.G. Complete atrioventricular block in patients with atrioventricular discordance. Circulation. 1983;67:1374–1377. PubMed
Moore J.P., Aboulhosn J.A. Introduction to the congenital heart defects: anatomy of the conduction system. Cardiac Electrophysiol Clin. 2017;9:167–175. PubMed
Jaeggi E.T., Hornberger L.K., Smallhorn J.F. Prenatal diagnosis of complete atrioventricular block associated with structural heart disease: combined experience of two tertiary care centers and review of the literature. Ultrasound Obstet Gynecol. 2005;26:16–21. PubMed
Lopes L.M., Tavares G.M., Damiano A.P. Perinatal outcome of fetal atrioventricular block: one-hundred-sixteen cases from a single institution. Circulation. 2008;118:1268–1275. PubMed
Silka M.J., Manwill J.R., Kron J. Bradycardia-mediated tachyarrhythmias in congenital heart disease and responses to chronic pacing at physiologic rates. Am J Cardiol. 1990;65:488–493. PubMed
Rhodes L.A., Walsh E.P., Gamble W.J. Benefits and potential risks of atrial antitachycardia pacing after repair of congenital heart disease. Pacing Clin Electrophysiol. 1995;18:1005–1016. PubMed
Kramer C.C., Maldonado J.R., Olson M.D. Safety and efficacy of atrial antitachycardia pacing in congenital heart disease. Heart Rhythm. 2018;15:543–547. PubMed
Stephenson E.A., Casavant D., Tuzi J. Efficacy of atrial antitachycardia pacing using the Medtronic AT500 pacemaker in patients with congenital heart disease. Am J Cardiol. 2003;92:871–876. PubMed
Tsao S., Deal B.J., Backer C.L. Device management of arrhythmias after Fontan conversion. J Thorac Cardiovasc Surg. 2009;138:937–940. PubMed
Barber B.J., Batra A.S., Burch G.H. Acute hemodynamic effects of pacing in patients with Fontan physiology: a prospective study. J Am Coll Cardiol. 2005;46:1937–1942. PubMed
Drago F., Silvetti M.S., Grutter G. Use of DDDRP pacing device in prevention and treatment of tachy-brady syndrome after Mustard procedure. Pacing Clin Electrophysiol. 2004;27:530–532. PubMed
Stout K.K., Daniels C.J., Aboulhosn AHA/ACC guideline for the management of adults with congenital heart disease: a report of the American college of Cardiology/American heart association task force on clinical practice guidelines. Circulation. 2018;139:e698–e800. 2019. PubMed
Khairy P., Landzberg M., Gatzoulis M.A. Epicardial versus ENdocardial pacing and Thromboembolic events (EVENT) Investigators. Transvenous pacing leads and systemic thromboemboli in patients with intracardiac shunts: a multicenter study. Circulation. 2006;113:2391–2397. PubMed
DeSimone C.V., Friedman P.A., Noheria A. Stroke or transient ischemic attack in patients with transvenous pacemaker or defibrillator and echocardiographically detected patent foramen ovale. Circulation. 2013;128:1433–1441. PubMed
Supple G.E., Ren J.-F., Zado E.S., Marchlinski F.E. Mobile thrombus on device leads in patients undergoing ablation. Circulation. 2011;124:772–778. PubMed
Lau K.C., Gaynor J.W., Fuller S.M. Long term atrial and ventricular epicardial pacemaker lead survival after cardiac operations in pediatric patients with congenital heart disease. Heart Rhythm. 2015;12:566–573. PubMed
Termosesov S., Kulbachinskaya E., Polyakava E. Video-assisted thoracoscopic pacemaker lead placement in children with atrioventricular block. Ann Pediatr Cardiol. 2021;14:67–71. PubMed PMC
Clark B., Kumthekar R., Mass P. Chronic performance of subxiphoid minimally invasive pericardial Model 20066 pacemaker lead insertion in an infant animal model. J Intervent Card Electrophysiol. 2020;59:13–19. PubMed PMC
Cohen M.I., Rhodes L.A., Spray T.L. Efficacy of prophylactic epicardial pacing leads in children and young adults. Ann Thorac Surg. 2004;78:197–203. PubMed
Rychik J., Atz A.M., Celermajer D.S., Deal B.J. Evaluation and management of the child and adult with Fontan circulation: a scientific statement from the American Heart Association. Circulation. 2019;140:e234–e284. PubMed
Kertesz N.J., Towbin J.A., Clunie S. Long-term follow-up of arrhythmias in pediatric orthotopic heart transplant recipients: incidence and correlation with rejection. J Heart Lung Transplant. 2003;22:889–893. PubMed
El-Assaad I., Al-Kindi S.G., Oliveira G.H. Pacemaker implantation in pediatric heart transplant recipients: predictors, outcomes, and impact on survival. Heart Rhythm. 2015;12:1776–1781. PubMed
Jones D.G., Mortsell D.H., Rajaruthnam D. Permanent pacemaker implantation early and late after heart transplantation: clinical indication, risk factors and prognostic implications. J Heart Lung Transplant. 2011;30:1257–1265. PubMed
Mahmood A., Andrews R., Fenton M. Permanent pacemaker implantation after pediatric heart transplantation: risk factors, indications, and outcomes. Clin Transplant. 2019;33 PubMed
Luebbert J.J., Lee F.A., Rosenfeld L.E. Pacemaker therapy for early and late sinus node dysfunction in orthotopic heart transplant recipients: a single-center experience. Pacing Clin Electrophysiol. 2008;31:1108–1112. PubMed
Cannon B.C., Denfeld S.W., Friedman R.A. Late pacemaker requirement after pediatric orthotopic heart transplantation may predict the presence of transplant coronary artery disease. J Heart Lung Transplant. 2004;23:67–71. PubMed
Chang A.C., Hruban R.H., Levin H.R. Comparison of rejection in the atrioventricular node and bundles with the working myocardium in transplanted hearts. J Heart Lung Transplant. 1991;10:915–920. PubMed
Daly K.P., Chakravarti S.B., Tresler M. Sudden death after pediatric heart transplantation: analysis of data from the pediatric heart transplant study group. J Heart Lung Transplant. 2011;30:1395–1402. PubMed PMC
Carboni M.P. Sudden cardiac death after heart transplantation: can ICD prevent SCD? Heart Rhythm. 2014;11:1691–1692. PubMed
Feingold B., Mahle W.T., Auerbach S. Management of cardiac involvement associated with neuromuscular diseases: a scientific statement from the American Heart Association. Circulation. 2017;136:e200–e231. PubMed
Bhakta D., Shen C., Kron J. Pacemaker and implantable cardioverter-defibrillator use in a us myotonic dystrophy type 1 population. J Cardiovasc Electrophysiol. 2011;22:1369–1375. PubMed
Lund M., Diaz K.J., Ranthe M.F. Cardiac involvement in myotonic dystrophy: a nationwide cohort study. Eur Heart J. 2014;35:2158–2164. PubMed
Ha A.H., Tarnopolsky M.A., Bergstra T.G. Predictors of atrio-ventricular conduction disease, long-term outcomes in patients with myotonic dystrophy types I and II. Pacing Clin Electrophysiol. 2012;35:1262–1269. PubMed
Groh W.J., Groh M.R., Saha C. Electrocardiographic abnormalities and sudden death in myotonic dystrophy type 1. N Engl J Med. 2008;358:2688–2697. PubMed
Wahbi K., Meune C., Porcher R. Electrophysiological study with prophylactic pacing and survival in adults with myotonic dystrophy and conduction system disease. J Am Med Assoc. 2012;307:1292–1301. PubMed
Van Berlo J.H., de Voogt W.G., van der Kooi A.J. Meta-analysis of clinical characteristics of 299 carriers of LMNA gene mutations: do lamin A/C mutations portend a high risk of sudden death? J Mol Med. 2005;83:79–83. PubMed
Polak P.E., Zijlstra F., Roelandt J.R. Indications for pacemaker implantation in the Kearns-Sayre syndrome. Eur Heart J. 1989;10:281–282. PubMed
Kabunga P., Lau A.K., Phan K. Systematic review of cardiac electrical disease in Kearns-Sayre syndrome and mitochondrial cytopathy. Int J Cardiol. 2015;181:303–310. PubMed
Khambatta S., Nguyen D.L., Beckman T.J. Kearns-Sayre syndrome: a case series of 35 adults and children. Int J Gen Med. 2014;7:325–332. PubMed PMC
Di Mambro C., Tamborrino P.P., Silvetti M.S. Progressive involvement of cardiac conduction system in paediatric patients with Kearns-Sayre syndrome: how to predict occurrence of complete heart block and sudden cardiac death? Europace. 2021;6:948–957. PubMed
Hasselberg N.E., Edvardsen T., Petri H., Berge K.E. Risk prediction of ventricular arrhythmias and myocardial function in Lamin A/C mutation positive subjects. Europace. 2014;16:563–571. PubMed
Asatryan B., Medeiros-Domingo A. Molecular and genetic insights into progressive cardiac conduction disease. Europace. 2019;21:1145–1158. PubMed
Kolterer B., Gebauer R.A., Janousek J., Dähnert I., Riede F.T., Paech C. Improved quality of life after treatment of prolonged asystole during breath holding spells with a cardiac pacemaker. Ann Pediatr Cardiol. 2015;8:113–117. PubMed PMC
McLeod K.A., Wilson N., Hewitt J., Norrie J., Stephenson J.B. Cardiac pacing for severe childhood neurally mediated syncope with reflex anoxic seizures. Heart. 1999;82:721–725. PubMed PMC
Kelly A.M., Porter C.J., McGoon M.D., Espinosa R.E., Osborn M.J., Hayes D.L. Breath-holding spells associated with significant bradycardia: successful treatment with permanent pacemaker implantation. Pediatrics. 2001;108:698–702. PubMed
Brignole M., Menozzi C., Moya A. International study on syncope of uncertain etiology 3 (ISSUE-3) investigators. Pacemaker therapy in patients with neurally mediated syncope and documented asystole: third international study on syncope of uncertain etiology (ISSUE-3): a randomized trial. Circulation. 2012;125:2566–2571. PubMed
Paech C., Wagner F., Mensch S., Antonin Gebauer R. Cardiac pacing in cardioinhibitory syncope in children. Congenit Heart Dis. 2018;13:1064–1068. PubMed
Sutton R., de Jong JSY, Stewart J.M. Pacing in vasovagal syncope: physiology, pacemaker sensors, and recent clinical trials-Precise patient selection and measurable benefit. Heart Rhythm. 2020;17:821–828. PubMed PMC
Benditt D.G., van Dijk G., Thijs R.D. Ictal asystole: life-threatening vagal storm or a benign seizure self-termination mechanism? Circ Arrhythm Electrophysiol. 2015;8:11–14. PubMed
Bestawros M., Darbar D., Arain A., Abou-Khalil B., Plummer D., Dupont W.D., Rah S.R. Ictal asystole and ictal syncope: insights into clinical management. Circ Arrhythm Electrophysiol. 2015;8:159–164. PubMed PMC
Moss A.J., Liu J.E., Gottlieb S., Locati E.H. Efficacy of permanent pacing in the management of high-risk patients with long QT syndrome. Circulation. 1991;84:1524–1529. PubMed
Eldar M., Griffin J.C., Van Hare G.F. Combined use of beta-adrenergic blocking agents and long-term cardiac pacing for patients with the long QT syndrome. J Am Coll Cardiol. 1992;20:830–837. PubMed
Viskin S., Fish R., Zeltser D. Arrhythmias in the congenital long QT syndrome: how often is torsade de pointes pause dependent? Heart. 2000;83:661–666. PubMed PMC
Aziz P.F., Tanel R.E., Zelster I.J. Congenital long QT syndrome and 2:1 atrioventricular block: an optimistic outcome in the current era. Heart Rhythm. 2010;7:781–785. PubMed
Eldar M., Griffin J.C., Abbott J.A. Permanent cardiac pacing in patients with the long QT syndrome. J Am Coll Cardiol. 1987;10:600–607. PubMed
Kowlgi G.N., Giudicessi J.R., Brake W. Efficacy of intentional permanent atrial pacing in the long-term management of congenital long QT syndrome. J Cardiovasc Electrophysiol. 2021;32:782–789. PubMed
Bellmann B., Roser M., Muntean B. Atrial standstill in sinus node disease due to extensive atrial fibrosis: impact on dual chamber pacemaker implantation. Europace. 2016;18:238–245. PubMed
Ishikawa T., Tsuji Y., Makita N. Inherited bradyarrhythmia: a diverse genetic background. J Arrhythm. 2016;32:352–358. PubMed PMC
McAlister H.F., Klementowicz P.T., Andrews C. Lyme carditis: an important cause of reversible heart block. Ann Intern Med. 1989;110 339–245. PubMed
Forrester J.D., Mead P. Third-degree heart block associated with lyme carditis: review of published cases. Clin Infect Dis. 2014;59:996–1000. PubMed
Nunes M.C.P., Beaton A., Acquatella H. Chagas cardiomyopathy: an update of current clinical knowledge and management: a scientific statement from the American heart association. Circulation. 2018;138:33–41. PubMed
Bocchi E.A., Bestetti R.B., Scanavacca M.I. Chronic Chagas heart disease management: from etiology to cardiomyopathy treatment. J Am Coll Cardiol. 2017;70:1510–1524. PubMed
Dionne A., Mah D., Son M.F. Atrio-ventricular block in children with multisystem inflammatory syndrome. Pediatrics. 2020;146 PubMed
Batra A.S., Epstein D., Silka M.J. The clinical course of acquired complete heart block in children with acute myocarditis. Pediatr Cardiol. 2003;24:495–497. PubMed
Cunningham T., Roston T.M., Franciosi S. Initially unexplained cardiac arrest in children and adolescents: a national experience from the Canadian Pediatric Heart Rhythm Network. Heart Rhythm. 2020;17:975–981. PubMed
Rucinski C., Winbo A., Marcondes L. A population-based registry of patients with inherited cardiac conditions and resuscitated cardiac arrest. J Am Coll Cardiol. 2020;75:2698–2707. PubMed
Silka M.J., Kobayashi R.L., Hill A.C. Pediatric survivors of out-of-hospital ventricular fibrillation: etiologies and outcomes. Heart Rhythm. 2018;15:116–121. PubMed
van der Werf C., Lieve K.V., Bos J.M. Implantable cardioverter-defibrillators in previously undiagnosed patients with catecholaminergic polymorphic ventricular tachycardia resuscitated from sudden cardiac arrest. Eur Heart J. 2019;40:2953–2961. PubMed
Cohen M.I., Etheridge S.P. In: Cardiac pacing and defibrillation in pediatric and congenital heart disease. Shah M., Rhodes L., Kaltman J., editors. John Wiley and Sons Ltd; West Sussex, UK: 2017. Indications for implantable cardioverter defibrillator therapy, device and lead selection; pp. 62–90.
Minier M., Probst V., Berthome P. Age at diagnosis of Brugada syndrome: influence on clinical characteristics and risk of arrhythmia. Heart Rhythm. 2020;17:743–749. PubMed
Silka M.J., Kron J., Dunnigan A., Dick 2nd M. Sudden cardiac death and the use of implantable cardioverter-defibrillators in pediatric patients. The Pediatric Electrophysiology Society. Circulation. 1993;87:800–807. PubMed
Berul C.I., Van Hare G.F., Kertesz N.J. Results of a multicenter retrospective implantable cardioverter-defibrillator registry of pediatric and congenital heart disease patients. J Am Coll Cardiol. 2008;51:1685–1691. PubMed
Von Bergen N.H., Atkins D.L., Dick 2nd M. Multicenter study of the effectiveness of implantable cardioverter defibrillators in children and young adults with heart disease. Pediatr Cardiol. 2011;32:399–405. PubMed
Baskar S., Bao H., Minges K.E., Spar D.S. Characteristics and outcomes of pediatric patients who undergo placement of implantable cardioverter defibrillators: insights from the national cardiovascular data registry. Circ Arrhythm Electrophysiol. 2018;11 PubMed
Collins K.K., Schaffer M.S., Liberman L. Fascicular and nonfascicular left ventricular tachycardias in the young: an international multicenter study. J Cardiovasc Electrophysiol. 2013;24:640–648. PubMed
Roggen A., Pavlovic M., Pfammatter J.P. Frequency of spontaneous ventricular tachycardia in a pediatric population. Am J Cardiol. 2008;101:852–854. PubMed
Wu J., Chen Y., Ji W., Gu B. Catheter ablation of ventricular tachycardia in the pediatric patients: a single-center experience. Pacing Clin Electrophysiol. 2020;43:37–46. PubMed
Li X.M., Jiang H., Li Y.H., Zhang Y. Effectiveness of radiofrequency catheter ablation of outflow tract ventricular arrhythmias in children and adolescents. Pediatr Cardiol. 2016;37:1475–1481. PubMed
Sears S.F., Hazelton A.G., St Amant J. Quality of life in pediatric patients with implantable cardioverter defibrillators. Am J Cardiol. 2011;107:1023–1027. PubMed
Kini V., Soufi M.K., Deo R. Appropriateness of primary prevention implantable cardioverter-defibrillators at the time of generator replacement: are indications still met? J Am Coll Cardiol. 2014;63:2388–2394. PubMed PMC
Schwartz P.J., Spazzolini C., Priori S.G. Who are the long-QT syndrome patients who receive an implantable cardioverter-defibrillator and what happens to them?: data from the European Long-QT Syndrome Implantable Cardioverter-Defibrillator (LQTS ICD) Registry. Circulation. 2010;122:1272–1282. PubMed
Vincent G.M., Schwartz P.J., Denjoy I. High efficacy of beta-blockers in long-QT syndrome type 1: contribution of noncompliance and QT-prolonging drugs to the occurrence of beta-blocker treatment "failures. Circulation. 2009;119:215–221. PubMed
Wedekind H., Burde D., Zumhagen S. QT interval prolongation and risk for cardiac events in genotyped LQTS-index children. Eur J Pediatr. 2009;168:1107–1115. PubMed
Schwartz P.J., Priori S.G., Cerrone M. Left cardiac sympathetic denervation in the management of high-risk patients affected by the long-QT syndrome. Circulation. 2004;109:1826–1833. PubMed
Bos J.M., Bos K.M., Johnson J.N. Left cardiac sympathetic denervation in long QT syndrome: analysis of therapeutic nonresponders. Circ Arrhythm Electrophysiol. 2013;6:705–711. PubMed
Garson A., Jr., Dick 2nd M., Fournier A. The long QT syndrome in children. An international study of 287 patients. Circulation. 1993;87:1866–1872. PubMed
Spazzolini C., Mullally J., Moss A.J. Clinical implications for patients with long QT syndrome who experience a cardiac event during infancy. J Am Coll Cardiol. 2009;54:832–837. PubMed PMC
Biton Y., Rosero S., Moss A.J. Primary prevention with the implantable cardioverter-defibrillator in high-risk long-QT syndrome patients. Europace. 2019;21:339–346. PubMed PMC
Moss A.J., Zareba W., Hall W.J. Effectiveness and limitations of beta-blocker therapy in congenital long-QT syndrome. Circulation. 2000;101:616–623. PubMed
Liu J.F., Jons C., Moss A.J. Risk factors for recurrent syncope and subsequent fatal or near-fatal events in children and adolescents with long QT syndrome. J Am Coll Cardiol. 2011;57:941–950. PubMed PMC
Goldenberg I., Moss A.J., Peterson D.R. Risk factors for aborted cardiac arrest and sudden cardiac death in children with the congenital long-QT syndrome. Circulation. 2008;117:2184–2191. PubMed PMC
Giudicessi J.R., Ackerman M.J. Genotype- and phenotype-guided management of congenital long QT syndrome. Curr Probl Cardiol. 2013;38:417–455. PubMed PMC
Dufendach K.A., Timothy K., Ackerman M.J. Clinical outcomes and modes of death in Timothy syndrome: a multicenter international study of a rare disorder. JACC Clin Electrophysiol. 2018;4:459–466. PubMed
Crotti L., Spazzolini C., Tester D.J. Calmodulin mutations and life-threatening cardiac arrhythmias: insights from the International Calmodulinopathy Registry. Eur Heart J. 2019;40:2964–2975. PubMed PMC
Mazzanti A., Maragna R., Vacanti Interplay between genetic substrate, QTc duration, and arrhythmia risk in patients with long QT syndrome. J Am Coll Cardiol. 2018;71:1663–1671. PubMed
Etheridge S.P., Sanatani S., Cohen M.I., Albaro C.A., Saarel E.V., Bradley D.J. Long QT syndrome in children in the era of implantable defibrillators. J Am Coll Cardiol. 2007;50:1335–1340. PubMed
Moore J.P., Gallotti R.G., Shannon K.M. Genotype predicts outcomes in fetuses and neonates with severe congenital long QT syndrome. JACC Clin Electrophysiol. 2020;6:1561–1570. PubMed PMC
Roston T.M., Jones K., Hawkins N.M. Implantable cardioverter-defibrillator use in catecholaminergic polymorphic ventricular tachycardia: a systematic review. Heart Rhythm. 2018;15:1791–1799. PubMed
Miyake C.Y., Webster G., Czosek R.J. Efficacy of implantable cardioverter defibrillators in young patients with catecholaminergic polymorphic ventricular tachycardia: success depends on substrate. Circ Arrhythm Electrophysiol. 2013;6:579–587. PubMed
Priori S., Napolitano C., Memmi M. Clinical and molecular characterization of patients with catecholaminergic polymorphic ventricular tachycardia. Circulation. 2002;106:69–74. PubMed
Roston T.M., Haji-Ghassemi O., LaPage M.J. Catecholaminergic polymorphic ventricular tachycardia patients with multiple genetic variants in the PACES CPVT Registry. PLoS One. 2018;13 PubMed PMC
Hayashi M., Denjoy I., Extramiana F. Incidence and risk factors of arrhythmic events in catecholaminergic polymorphic ventricular tachycardia. Circulation. 2009;119:2426–2434. PubMed
Kannankeril P.J., Moore J.P., Cerrone M. Efficacy of flecainide in the treatment of catecholaminergic polymorphic ventricular tachycardia: a randomized clinical trial. JAMA Cardiol. 2017;2:759–766. PubMed PMC
De Ferrari G.M., Dusi V., Spazzolini C. Clinical management of catecholaminergic polymorphic ventricular tachycardia: the role of left cardiac sympathetic denervation. Circulation. 2015;131:2185–2193. PubMed
Olde Nordkamp L.R., Postema P.G., Knops R.E. Implantable cardioverter-defibrillator harm in young patients with inherited arrhythmia syndromes: a systematic review and meta-analysis of inappropriate shocks and complications Heart. Rhythm. 2016;13:443–454. PubMed
Roses-Noguer F., Jarman J.W., Clague J.R. Outcomes of defibrillator therapy in catecholaminergic polymorphic ventricular tachycardia. Heart Rhythm. 2014;11:58–66. PubMed
Gonzalez Corcia M.C., de Asmundis C., Chierchia G.B. Brugada syndrome in the paediatric population: a comprehensive approach to clinical manifestations, diagnosis, and management. Cardiol Young. 2016;26:1044–1055. PubMed
Gonzalez Corcia M.C., Sieira J., Sarkozy A. Brugada syndrome in the young: an assessment of risk factors predicting future events. Europace. 2017;19:1864–1873. PubMed
Gonzalez Corcia M.C., Sieira J., Pappaert G. A clinical score model to predict lethal events in young patients (≤19 years) with the Brugada syndrome. Am J Cardiol. 2017;120:797–802. PubMed
Probst V., Denjoy I., Meregalli P.G. Clinical aspects and prognosis of Brugada syndrome in children. Circulation. 2007;115:2042–2048. PubMed
Michowitz Y., Milman A., Andorin A. Characterization and management of arrhythmic events in young patients with Brugada syndrome. J Am Coll Cardiol. 2019;73:1756–1765. PubMed
Gonzalez Corcia M.C., Sieira J. Implantable cardioverter-defibrillators in children and adolescents with Brugada syndrome. J Am Coll Cardiol. 2018;71:148–157. PubMed
Andorin A., Behr R., Denjoy I. Impact of clinical and genetic findings on the management of young patients with Brugada syndrome. Heart Rhythm. 2016;13:1274–1282. PubMed
Maron B.J., Rowin E.J., Casey S.A. Hypertrophic cardiomyopathy in children, adolescents, and young adults associated with low cardiovascular mortality with contemporary management strategies. Circulation. 2016;133:62–73. PubMed
Maron B.J., Spirito P., Ackerman M.J. Prevention of sudden cardiac death with implantable cardioverter-defibrillators in children and adolescents with hypertrophic cardiomyopathy. J Am Coll Cardiol. 2013;61:1527–1535. PubMed
Miron A., Lafreniere-Roula M., Steve Fan C.P. A validated model for sudden cardiac death risk prediction in pediatric hypertrophic cardiomyopathy. Circulation. 2020;142:217–229. PubMed PMC
Norrish G., Cantarutti N., Pissaridou E. Risk factors for sudden cardiac death in childhood hypertrophic cardiomyopathy: a systematic review and meta-analysis. Eur J Prev Cardiol. 2017;24:1220–1230. PubMed
Balaji S., DiLorenzo M.P., Fish F.A. Risk factors for lethal arrhythmic events in children and adolescents with hypertrophic cardiomyopathy and an implantable defibrillator: an international multicenter study. Heart Rhythm. 2019;16:1462–1467. PubMed
Norrish G., Ding T., Field E. Development of a novel risk prediction model for sudden cardiac death in childhood hypertrophic cardiomyopathy (HCM Risk-Kids) JAMA Cardiol. 2019;1:918–927. PubMed PMC
Kaski J., Tomé Esteban M.T., Lowe M. Outcomes after implantable cardioverter-defibrillator treatment in children with hypertrophic cardiomyopathy. Heart. 2007;93:372–374. PubMed PMC
Briasoulis A., Mallikethi-Reddy S., Palla M. Myocardial fibrosis on cardiac magnetic resonance and cardiac outcomes in hypertrophic cardiomyopathy: a meta-analysis. Heart. 2015;101:1406–1411. PubMed
Prinz C., Schwarz M., Ilic I. Myocardial fibrosis severity on cardiac magnetic resonance imaging predicts sustained arrhythmic events in hypertrophic cardiomyopathy. Can J Cardiol. 2013;29:358–363. PubMed
Vermeer A.M.C., Clur S.B., Blom N.A. Penetrance of hypertrophic cardiomyopathy in children who are mutation positive. J Pediatr. 2017;188:91–95. PubMed
Spinner J.A., Noel C.V., Denfield S.W. Association of late gadolinium enhancement and degree of left ventricular hypertrophy assessed on cardiac magnetic resonance imaging with ventricular tachycardia in children with hypertrophic cardiomyopathy. Am J Cardiol. 2016;117:1342–1348. PubMed
Maron B.J., Maron M.S., Semsarian C. Genetics of hypertrophic cardiomyopathy after 20 years: clinical perspectives. J Am Coll Cardiol. 2012;60:705–715. PubMed
Muchtar E., Blauwet L.A., Gertz M.A. Restrictive cardiomyopathy: genetics, pathogenesis, clinical manifestations, diagnosis, therapy. Circ Res. 2017;121:819–837. PubMed
Walsh M.A., Grenier M.A., Jeffries L.A. Conduction abnormalities in pediatric patients with restrictive cardiomyopathies. Circ Heart Fail. 2012;5:267–273. PubMed
Webber S.A., Lipshultz S.E., Sleeper L.A. Outcomes of restrictive cardiomyopathy in childhood and the influence of phenotype: a report from the Pediatric Cardiomyopathy Registry. Circulation. 2012;126:1237–1244. PubMed
Wittekind S.G., Ryan T.D., Gao Z. Contemporary outcomes of pediatric restrictive cardiomyopathy: a single-center experience. Pediatr Cardiol. 2019;40:694–704. PubMed
Zangwill S.D., Naftel D., L'Ecuyer T. Outcomes of children with restrictive cardiomyopathy listed for heart transplant: a multi-institutional study. J Heart Lung Transplant. 2009;28:1335–1340. PubMed
DeWitt E.S., Chandler S.F., Hylind R.J. Phenotypic manifestations of arrhythmogenic cardiomyopathy in children and adolescents. J Am Coll Cardiol. 2019;74:346–358. PubMed PMC
Mazzanti A., Ng K., Faragli A. Arrhythmogenic right ventricular cardiomyopathy: clinical course and predictors of arrhythmic risk. J Am Coll Cardiol. 2016;68:2540–2550. PubMed
Te Riele A., James C.A., Sawant A.C. Arrhythmogenic right ventricular dysplasia/cardiomyopathy in the pediatric population: clinical characterization and comparison with adult-onset disease. JACC Clin Electrophysiol. 2015;1:551–560. PubMed
Orgeron G.M., James C.A., Te Riele A. Implantable cardioverter-defibrillator therapy in arrhythmogenic right ventricular dysplasia/cardiomyopathy: predictors of appropriate therapy, outcomes, and complications. J Am Heart Assoc. 2017;6 PubMed PMC
Ortiz-Genga M.F., Cuenca S., Dal Ferro M. Truncating FLNC mutations are associated with high-risk dilated and arrhythmogenic cardiomyopathies. J Am Coll Cardiol. 2016;68:2440–2451. PubMed
Dubin A.M., Berul C.I., Bevilacqua L.M. The use of implantable cardioverter-defibrillators in pediatric patients awaiting heart transplantation. J Card Fail. 2003;9:375–379. PubMed
Bharucha T., Lee K.J., Daubeney P.E. Sudden death in childhood cardiomyopathy: results from a long-term national population-based study. J Am Coll Cardiol. 2015;65:2302–2310. PubMed
Pahl E., Sleeper L.A., Canter C.E. PCMR (Pediatric Cardiomyopathy Registry) Investigators. Incidence of and risk factors for sudden cardiac death in children with dilated cardiomyopathy: a report from the Pediatric Cardiomyopathy Registry. J Am Coll Cardiol. 2012;59:607–615. PubMed PMC
Middlekauff H.R., Stevenson W.G., Stevenson L.W., Saxon L.A. Syncope in advanced heart failure: high risk of sudden death regardless of origin of syncope. J Am Coll Cardiol. 1993;21:110–116. PubMed
Bardy G.H., Lee K.L., Mark D.B. Amiodarone or an implantable cardioverter-defibrillator for congestive heart failure. N Engl J Med. 2005;352:225–237. PubMed
El-Assaad I., Al-Kindi S.G., Oliveira G. Implantable cardioverter-defibrillator and wait-list outcomes in pediatric patients awaiting heart transplantation. Heart Rhythm. 2015;12:2443–2448. PubMed
Rhee E.K., Canter C.E., Basile S. Sudden death prior to pediatric heart transplantation: would implantable defibrillators improve outcome? J Heart Lung Transplant. 2007;26:447–452. PubMed
Jefferies J.L., Wilkinson J.D., Sleeper L.A. Cardiomyopathy phenotypes and outcomes for children with left ventricular myocardial noncompaction: results from the Pediatric Cardiomyopathy Registry. J Card Fail. 2015;21:877–884. PubMed PMC
Brescia S.T. Mortality and sudden death in pediatric left ventricular noncompaction in a tertiary referral center. Circulation. 2013;127:2202–2208. PubMed
van Waning J.I., Caliskan K., Hoedemaekers Y.M. Genetics, Clinical features, and long-term outcome of noncompaction cardiomyopathy. J Am Coll Cardiol. 2018;71:711–722. PubMed
Khairy P., Harris L., Landzberg M.J. Implantable cardioverter-defibrillators in tetralogy of Fallot. Circulation. 2008;117:363–370. PubMed
Silka M.J., Hardy B.G., Menashe V.D. A population-based prospective evaluation of risk of sudden cardiac death after operation for common congenital heart defects. J Am Coll Cardiol. 1998;32:245–251. PubMed
Nieminen H.P., Jokinen E.V., Sairanen H.I. Causes of late deaths after pediatric cardiac surgery: a population-based study. J Am Coll Cardiol. 2007;50:1263–1271. PubMed
Miyazaki A., Sakaguchi H., Ohuchi H. Efficacy of hemodynamic-based management of tachyarrhythmia after repair of tetralogy of Fallot. Circ J. 2012;76:2855–2862. PubMed
Zeppenfeld K., Schalij M.J., Bartelings M.M. Catheter ablation of ventricular tachycardia after repair of congenital heart disease: electroanatomic identification of the critical right ventricular isthmus. Circulation. 2007;116:2241–2252. PubMed
Triedman J.K. Should patients with congenital heart disease and a systemic ventricular ejection fraction less than 30% undergo prophylactic implantation of an ICD? Implantable cardioverter defibrillator implantation guidelines based solely on left ventricular ejection fraction do not apply to adults with congenital heart disease. Circ Arrhythm Electrophysiol. 2008;1:307–316. PubMed
Silka M.J., Bar-Cohen Y. Should patients with congenital heart disease and a systemic ventricular ejection fraction less than 30% undergo prophylactic implantation of an ICD? Patients with congenital heart disease and a systemic ventricular ejection fraction less than 30% should undergo prophylactic implantation of an implantable cardioverter defibrillator. Circ Arrhythm Electrophysiol. 2008;1:298–306. PubMed
Jordan C.P., Freedenberg V., Wang Y. Implant and clinical characteristics for pediatric and congenital heart patients in the national cardiovascular data registry implantable cardioverter defibrillator registry. Circ Arrhythm Electrophysiol. 2014;7:1092–1100. PubMed
Dechert B.E., Bradley D.J., Serwer G.A. Implantable cardioverter defibrillator outcomes in pediatric and congenital heart disease: time to system revision. Pacing Clin Electrophysiol. 2016;39:703–708. PubMed
Krause U., Müller M.J., Wilberg Y. Transvenous and non-transvenous implantable cardioverter-defibrillators in children, adolescents, and adults with congenital heart disease: who is at risk for appropriate and inappropriate shocks? Europace. 2019;21:106–113. PubMed
Kalra Y., Radbill A., Johns J.A. Antitachycardia pacing reduces appropriate and inappropriate shocks in children and congenital heart disease patients. Heart Rhythm. 2012;9:1829–1834. PubMed
Sandhu A., Ruckdeschel E., Sauer W.H., Collins K.K. Perioperative electrophysiology study in patients with tetralogy of Fallot undergoing pulmonary valve replacement will identify those at high risk of subsequent ventricular tachycardia. Heart Rhythm. 2018;15:679–685. PubMed
Alexander M.E., Walsh E.P., Saul J.P., Epstein M.R., Triedman J.K. Value of programmed ventricular stimulation in patients with congenital heart disease. J Cardiovasc Electrophysiol. 1999;10:1033–1044. PubMed
Khairy P., Landzberg M.J., Gatzoulis M.A. Value of programmed ventricular stimulation after tetralogy of fallot repair: a multicenter study. Circulation. 2004;109:1994–2000. PubMed
Radbill A.E., Triedman J.K., Berul C.I. System survival of nontransvenous implantable cardioverter-defibrillators compared to transvenous implantable cardioverter-defibrillators in pediatric and congenital heart disease patients. Heart Rhythm. 2010;7:193–198. PubMed
von Alvensleben Johannes C., Brynn Dechert, Bradley David J. Subcutaneous implantable cardioverter-defibrillators in pediatrics and congenital heart disease: a pediatric and congenital electrophysiology society multicenter review. JACC Clin Electrophysiol. 2020;6:1752–1761. PubMed
Steinberg J.S., Varma N., Cygankiewicz I. ISHNE-HRS expert consensus statement on ambulatory ECG and external cardiac monitoring/telemetry. Heart Rhythm. 2017;14:e55–e96. 2017. PubMed
Moya A., Sutton R., Ammirati F. Guidelines for the diagnosis and management of syncope. Eur Heart J. 2009;30:2631–2671. PubMed PMC
Macinnes M., Martin N., Fulton H., McLeod K.A. Comparison of a smartphone-based ECG recording system with a standard cardiac event monitor in the investigation of palpitations in children. Arch Dis Child. 2019;104:43–47. PubMed
Pradhan S., Robinson J.A., Shivapour J. Ambulatory arrhythmia detection with ZIO® XT patch in pediatric patients: a comparison of devices. Pediatr Cardiol. 2019;40:921–924. PubMed
Babikar A., Hynes B., Ward N. A retrospective study of the clinical experience of the implantable loop recorder in a paediatric setting. Int J Clin Pract. 2008;62:1520–1525. PubMed
Bezzerides V.J., Walsh A., Martuscello M. The real-world utility of the LINQ implantable loop recorder in pediatric and adult congenital heart patients. JACC Clin Electrophysiol. 2019;5:245–251. PubMed
Placidi S., Drago F., Milioni M. Miniaturized Implantable Loop Recorder in Small Patients: an effective approach to the evaluation of subjects at risk of sudden death. Pacing Clin Electrophysiol. 2016;39:669–674. PubMed
Avari Silva J.N., Bromberg B.I., Emge F.K. Implantable loop recorder monitoring for refining management of children with inherited arrhythmia syndromes. J Am Heart Assoc. 2016;5 PubMed PMC
Brignole M., Moya A., de Lange F.J. ESC Guidelines for the diagnosis and management of syncope. Eur Heart J. 2018;39:1883–1948. 2018. PubMed
Brignole M., Vardas P., Hoffman E. Indications for the use of diagnostic implantable and external ECG loop recorders. Europace. 2009;11:671–687. PubMed
Rossano J., Bloemers B., Sreeram N. Efficacy of implantable loop recorders in establishing symptom-rhythm correlation in young patients with syncope and palpitations. Pediatrics. 2003;112:e228–e233. PubMed
Edvardsson N., Garutti C., Rieger G. Unexplained syncope: implications of age and gender on patient characteristics and evaluation, the diagnostic yield of an implantable loop recorder, and the subsequent treatment. Clin Cardiol. 2014;37:618–625. PubMed PMC
Al Dhahri K.N., Potts J.E., Chiu C.C. Are implantable loop recorders useful in detecting arrhythmias in children with unexplained syncope? Pacing Clin Electrophysiol. 2009;32:1422–1427. PubMed
Frangini P.A., Cecchin F., Jordao L. How revealing are insertable loop recorders in pediatrics? Pacing Clin Electrophysiol. 2008;31:338–343. PubMed
Kenny D., Chakrabarti S., Ranasinghe A. Single-centre use of implantable loop recorders in patients with congenital heart disease. Europace. 2009;11:303–307. PubMed
Serdyuk S., Davtyan K., Burd S. Cardiac arrhythmias and sudden unexpected death in epilepsy: results of long-term monitoring. Heart Rhythm. 2021;18:221–228. PubMed
Bongiorni M.G., Burri H., Deharo J.C. EHRA expert consensus statement on lead extraction: recommendations on definitions, endpoints, research trial design, and data collection requirements for clinical scientific studies and registries: endorsed by APHRS/HRS/LAHRS. Europace. 2018;20:1217. 2018. PubMed
Fu H.X., Huang X.M., Zhong L., Osborn M.J., Bjarnason H., Mulpuru S., Zhao X.X., Friedman P.A., Cha Y.M. Outcome and management of pacemaker-induced superior vena cava syndrome. Pacing Clin Electrophysiol. 2014;37:1470–1476. PubMed
Riley R.F., Petersen S.E., Ferguson J.D., Bashir Y. Managing superior vena cava syndrome as a complication of pacemaker implantation: a pooled analysis of clinical practice. Pacing Clin Electrophysiol. 2010;33:420–425. PubMed
Atallah J., Erickson C.C., Cecchin F. Multi-institutional study of implantable defibrillator lead performance in children and young adults: results of the Pediatric Lead Extractability and Survival Evaluation (PLEASE) study. Circulation. 2013;127:2393–2402. PubMed
Cecchin F., Atallah J., Walsh E.P. Lead extraction in pediatric and congenital heart disease patients. Circ Arrhythmia Electrophysiol. 2010;3:437–444. PubMed
Mah D.Y., Prakash A., Porras D. Coronary artery compression from epicardial leads: more common than we think. Heart Rhythm. 2018;15:1439–1447. PubMed
Fender E.A., Killu A.M., Cannon B.C. Lead extraction outcomes in patients with congenital heart disease. Europace. 2017;19:441–446. PubMed
McCanta A.C., Kong M.H., Carboni M.P. Laser lead extraction in congenital heart disease: a case-controlled study. Pacing Clin Electrophysiol. 2013;36:372–380. PubMed
Moak J.P., Freedenberg V., Ramwell C. Effectiveness of excimer laser-assisted pacing and ICD lead extraction in children and young adults. Pacing Clin Electrophysiol. 2006;29:461–466. PubMed
El-Chami M.F., Sayegh M.N., Patel A. Outcomes of lead extracton in young adults. Heart Rhythm. 2017;14:537–540. PubMed
Gourraud J.B., Chaix M.A., Shohoudie A. Transvenous lead extraction in adults with congenital heart disease: insights from a 20-year single-center experience. Circ Arrhythm Electrophysiol. 2018;11 PubMed
Berul C.I., Villafane J., Atkins D.L. Pacemaker lead prolapse through the pulmonary valve in children. Pacing Clin Electrohysiol. 2007;30:1183–1189. PubMed
Webster R.G., Margossian R., Alexander M.E., Cecchin F., Triedman J.K., Walsh E.P., Berul C.I. Impact of transvenous ventricular pacing leads on tricuspid regurgitation in children and congenital heart disease patients. J Intervent Card Electrophysiol. 2008;21:65–68. PubMed PMC
Bar-Cohen Y., Berul C.I., Alexander M.E. Age, size, and lead factors alone do not predict venous obstruction in children and young adults with transvenous lead systems. J Cardiovasc Electrophysiol. 2006;17:754–759. PubMed
Joy P.S., Kumar G., Poole J.E. Cardiac implantable electronic device infections: who is at greatest risk? Heart Rhythm. 2017;14:839. PubMed
Sohal M., Williams S., Akhtar M. Laser lead extraction to facilitate cardiac implantable electronic device upgrade and revision in the presence of central venous obstruction. Europace. 2014;16:81–87. PubMed PMC
Gula L.J., Ames A., Woodburn A. Central venous occlusion is not an obstacle to device upgrade with the assistance of laser extraction. Pacing Clin Electrophysiol. 2005;28:661–666. PubMed
Viganego F., O'Donoghue S., Eldadah Z. Effect of early diagnosis and treatment with percutaneous lead extraction on survival in patients with cardiac device infections. Am J Cardiol. 2012;109:1466–1471. PubMed
Baddour L.M., Epstein A.E., Erickson C.C. Update on cardiovascular implantable electronic device infections and their management: a scientific statement from the American Heart Association. Circulation. 2010;121:458–477. PubMed
Janson C.M., Patel A.R., Bonney W.J. Implantable cardioverter-defibrillator lead failure in children and young adults, a matter of lead diameter of lead design? J Am Coll Cardiol. 2014;63:133–140. PubMed
Escudero C.A., Mah D.Y., Miyake C.Y. Riata lead failure in pediatric and congenital heart disease patients. J Cardiovasc Electrophysiol. 2019;30:320–325. PubMed
Slotwiner D., Varma N., Akar J. HRS Expert Consensus Statement on remote interrogation and monitoring for cardiovascular implantable electronic devices. Heart Rhythm. 2015;12:E69–E100. PubMed
Wilkoff B.L., Auricchio A., Brugada J. HRS/EHRA expert consensus on the monitoring of cardiovascular implantable electronic devices (CIEDs): description of techniques, indications, personnel, frequency and ethical considerations. Heart Rhythm. 2008;5:907–925. PubMed
Dasgupta S., Madani S., Figueroa R. Myocardial deformation as a predictor of right ventricular pacing -induced cardiomyopathy in the pediatric population. J Cardiovasc Electrophysiol. 2020;31:337–344. PubMed
Song M.K., Kim N.Y., Bae E.J. Long term follow up of epicardial pacing and left ventricular dysfunction in children with congenital heart block. Ann Thorac Surg. 2020;109:1913–1920. PubMed
Gebauer R.A., Tomek V., Salameh A. Predictors of left ventricular remodelling and failure in right ventricular pacing in the young. Eur Heart J. 2009;30:1097–1104. PubMed PMC
Thambo J.P., Bordachar P., Garrigue S. Detrimental ventricular remodelling in patients with congenital complete heart block and chronic right ventricular apical pacing. Circulation. 2004;110:3766–3772. PubMed
Tantengco M.V., Thomas R.L., Karpawich P.P. Left ventricular dysfunction after long-term right ventricular apical pacing in the young. J Am Coll Cardiol. 2001;37:2093–2100. PubMed
Gonzalez Corcia M.C., Remy L.S., Marchandise S. Exercise performance in young patients with complete atrioventricular block: the relevance of synchronous atrioventricular pacing. Cardiol Young. 2016:261066–261071. PubMed
Ross B., Zeigler V., Zinner A. The effect of exercise on the atrial electrogram voltage in young patients. Pacing Clin Electrophysiol. 1991;4:2092–2097. PubMed
Chudzik M., Klimczak A., Wranicz J.K. Ambulatory Holter monitoring in asymptomatic patients with DDD pacemakers—do we need ACC/AHA guideline revision? Arch Med Sci. 2013;9:815–820. PubMed PMC
Diemberger I., Gardini B., Martignani C. Holter ECG for pacemaker/defibrillator carriers: what is its role in the era of remote monitoring? Heart. 2015;101:1272–1278. PubMed
Dechert B.E., Sewer G.A., Bradley D.J. Cardiac implantable electronic device remote monitoring surveillance in pediatric and congenital heart disease: utility relative to frequency. Heart Rhythm. 2015;12:117–122. PubMed
Malloy L.E., Gingerich J., Olson M.D. Remote monitoring of cardiovascular implantable devices in the pediatric population improves detection of adverse events. Pediatr Cardiol. 2014;35:301–306. PubMed PMC
Nishii N., Miyoshi A., Kubo M. Analysis of arrhythmic events is useful to detect lead failure earlier in patients followed by remote monitoring. J Cardiovasc Electrophysiol. 2018;29:463–470. PubMed
Piccini J.P., Snell J., Prillinger Impact of remote monitoring on clinical events and associated health care utilization: a nationwide assessment. Heart Rhythm. 2016;13:2279–2286. PubMed
Hummel J.P., Leipold R.J., Amorosi S.L. Outcomes and costs of remote monitoring among patients with implanted cardiac defibrillators: an economic model based on the PREDICT RM database. J Cardiovasc Electrophysiol. 2019;30:1066–1077. PubMed PMC
Dechert B.E., Sewer G.A., Bradley D.J. Frequency of CIED remote monitoring: a quality improvement follow-up study. Pacing Clin Electrophysiol. 2019;42:959–962. PubMed
Boyer S.L., Silka M.J., Bar-Cohen Y. Current practices in the monitoring cardiac rhythm devices in pediatrics and congenital heart disease. Pediatr Cardiol. 2015;36:821–826. PubMed
Kadish A.H., Buxton A.E., Kennedy H.L. ACC/AHA clinical competence statement on electrocardiography and ambulatory electrocardiography: a report of the ACC/AHA/ACP-ASIM task force on clinical competence (ACC/AHA Committee to develop a clinical competence statement on electrocardiography and ambulatory electrocardiography) endorsed by the International Society for Holter and noninvasive electrocardiology. Circulation. 2001;104:3169–3178. PubMed
Bricker JT J., Garson A., Traweek M. The use of exercise testing in children to evaluate abnormalities of pacemaker function not apparent at rest. Pacing Clin Electrophysiol. 1985;8:656–660. PubMed
Sampio S.M.V., Craveiro N.M., Darrieux F. Accuracy of the pacemaker event recorder versus Holter-ECG to detect both symptomatic and asymptomatic ventricular arrhythmias. J Cardiovasc Electrophysiol. 2018;29:154–159. PubMed
Munawar D.A., Chan J.E.Z., Emami M. Magnetic resonance imaging in non-conditional pacemakers and implantable cardioverter-defibrillators: a systematic review and meta-analysis. Europace. 2020;22:288–298. PubMed
Bireley M., Kovach J.R., Morton C. Cardiac magnetic resonance imaging (MRI) in children is safe with most pacemaker systems, including those with epicardial leads. Pediatr Cardiol. 2020;41:801–808. PubMed
Shah A.D., Morris M.A., Hirsh D.S. Magnetic resonance imaging safety in nonconditional pacemaker and defibrillator recipients: a meta-analysis and systematic review. Heart Rhythm. 2018;15:1001–1008. PubMed
Gakenheimer-Smith L., Etheridge S.P., Niu M.C. MRI in pediatric and congenital heart disease patients with CIEDs and epicardial or abandoned leads. Pacing Clin Electrophysiol. 2020;43:797–804. PubMed PMC
Schaller R., Brunker T., Riley M.P. Magnetic resonance imaging in patients with cardiac implantable electronic devices with abandoned leads. JAMA Cardiol. 2021;6:549–556. PubMed PMC
Nazarian S., Hansford R., Rahsepar A.A. Safety of magnetic resonance imaging in patients with cardiac devices. N Engl J Med. 2017;377:2555–2564. PubMed PMC
Padmanabhan D., Kella D.K., Mehta R. Safety of magnetic resonance imaging in patients with legacy pacemakers and defibrillators and abandoned leads. Heart Rhythm. 2018;15:228–233. PubMed
Rahsepar A.A., Zimmerman S.L., Hansford R. The relationship between MRI radiofrequency energy and function of nonconditional implanted cardiac devices: a prospective evaluation. Radiology. 2020;295:307–313. PubMed PMC
Balmer C., Gass M., Dave H. Magnetic resonance imaging of patients with epicardial leads: in vitro evaluation of temperature changes at the lead tip. J Intervent Card Electrophysiol. 2019;56:321–326. PubMed
Langman D.A., Goldberg I.B., Finn J.P. Pacemaker lead tip heating in abandoned and pacemaker-attached leads at 1.5 Tesla MRI. J Magn Reson Imag. 2011;33:426–431. PubMed
Mattei E., Calcagnini G., Censi F. Role of the lead structure in MRI-induced heating: in vitro measurements on 30 commercial pacemaker/defibrillator leads. Magn Reson Med. 2012;67:925–935. PubMed
Higgins J.V., Gard J.J., Sheldon S.H. Safety and outcomes of magnetic resonance imaging in patients with abandoned pacemaker and defibrillator leads. Pacing Clin Electrophysiol. 2014;37:1284–1290. PubMed
Saarel E.V., Pilcher T.A., Etheridge S.P. Safety of sports for pediatric and congenital ICD and pacemaker patients. Heart Rhythm. 2013;10(5S):211.
Lampert R., Olshansky B., Heidbuchel H. Safety of sports for athletes with implantable cardioverter-defibrillators: results of a prospective, multinational registry. Circulation. 2013;127:2021–2030. PubMed
Lampert R., Olshansky B., Heidbuchel H. Safety of sports for athletes with implantable cardioverter defibrillators: long-term results of a prospective multinational registry. Circulation. 2017;135:2310–2312. PubMed
Saarel E.V., Law I., Berul C.I. Safety of sports for young patients with implantable cardioverter-defibrillators: long-term results of a prospective multinational registry. Circ Arrhythm Electrophysiol. 2018;11 PubMed
Maron B.J., Udelson J.E., Bonow R.O. Eligibility and disqualification recommendations for competitive athletes with cardiovascular abnormalities: task force 3: hypertrophic cardiomyopathy, arrhythmogenic right ventricular cardiomyopathy and other cardiomyopathies, and myocarditis. Circulation. 2015;132:e273–e280. PubMed
Zipes D.P., Link M.S., Ackerman M.J. Eligibility and disqualification recommendations for competitive athletes with cardiovascular abnormalities: task force 9: arrhythmias and conduction defects. Circulation. 2015;132:e315–e325. PubMed
Maron B.J., Zipes D.P. Introduction: eligibility recommendations for competitive athletes with cardiovascular abnormalities-general considerations. J Am Coll Cardiol. 2005;45:1318–1321. PubMed
Pelliccia A., Fagard R., Bjørnstad H.H. Recommendations for competitive sports participation in athletes with cardiovascular disease: a consensus document from the study group of sports Cardiology of the working group of cardiac rehabilitation and exercise physiology and the working group of myocardial and pericardial diseases of the European society of Cardiology. Eur Heart J. 2005;26:1422–1445. PubMed
Mitchell J.H., Haskell W., Snell P. Task force 8: classification of sports. J Am Coll Cardiol. 2005;45:1364–1367. PubMed
Lampert R., Cannom D., Olshansky B. Safety of sports participation in patients with implantable cardioverter defibrillators: a survey of heart rhythm society members. J Cardiovasc Electrophysiol. 2006;17:11–15. PubMed
The World Bank Country and lending groups. http://data.worldbank.org/about/country-classifications/country- and-lending-groups Available at: Accessed.
Bonny A., Mgantcha M., Jeilan M. Statistics on the use of cardiac electronic devices and interventional electrophysiological procedures in Africa from 2011 to 2016: report of the Pan African society of Cardiology (PASCAR) cardiac arrhythmias and pacing task Forces. Europace. 2018;1(20):1513–1526. PubMed PMC
Murray L.E., Smith A.H., Flack E.C. Genotypic and phenotypic predictors of complete heart block and recovery of conduction after surgical repair of congenital heart disease. Heart Rhythm. 2017;14:402–409. PubMed PMC
Paech C., Dahnert I., Kostelka M. Association of temporary complete AV block and junctional ectopic tachycardia after surgery for congenital heart disease. Ann Pediatr Cardiol. 2015;8:14–19. PubMed PMC
Batra A.S., Wells W.J., Hinoki K.W. Late recovery of atrioventricular conduction after pacemaker implantation for complete heart block associated with surgery for congenital heart disease. J Thorac Cardiovasc Surg. 2003;125:1291–1293. PubMed
Bruckheimer E., Berul C.I., Kopf G.S. Late recovery of surgically-induced atrioventricular block in patients with congenital heart disease. J Intervent Card Electrophysiol. 2002;6:191–195. PubMed
Khairy T., Lupien M.A., Nava S. Infections associated with resterilized pacemakers and defibrillators. N Engl J Med. 2020;382:1823–1831. PubMed
Baman T.S., Meier P., Romero J. Safety of pacemaker reuse: a meta-analysis with implications for underserved nations. Circ Arrhythm Electrophysiol. 2011;4:318–323. PubMed
Kapoor A., Vora A., Nataraj G., Mishra S. Guidance on reuse of cardio-vascular catheters and devices in India: a consensus document. Indian Heart J. 2017;69:357–363. PubMed PMC
Roberts P.R., El Refai M.H. The use of App-based follow-up of cardiac implantable electronic devices. Card Fail Rev. 2020;6:e03. PubMed PMC
Elwyn G., Frosch D., Thomson R. Shared decision making: a model for clinical practice. J Gen Intern Med. 2012;27:1361–1367. PubMed PMC
Greenfield S., Kaplan S., Ware J.E., Jr. Expanding patient involvement in care. Effects on patient outcomes. Ann Intern Med. 1985;102:520–528. PubMed
Legare F., Adekpedjou R., Stacey D. Interventions for increasing the use of shared decision making by healthcare professionals. Cochrane Database Syst Rev. 2018;7:CD006732. PubMed PMC
Khairy P., Dore A., Poirier N. Risk stratification in surgically repaired tetralogy of Fallot. Expert Rev Cardiovasc Ther. 2009;7:755–762. PubMed
Goette A., Auricchio A., Boriani G. EHRA White Paper: knowledge gaps in arrhythmia management—status 2019. Europace. 2019;21:993–994. PubMed
Burns K.M., Evans F., Kaltman J.R. Pediatric ICD utilization in the United States from 1997-2006. Heart Rhythm. 2011;8:23–28. PubMed PMC
Breatnach C.R., Dunne L., Al-Alawi K. Leadless Micra pacemaker use in the pediatric population: device implantation and short-term outcomes. Pediatr Cardiol. 2020;41:683–686. PubMed
Lyon S., Dandamudi G., Kean A.C. Permanent His-bundle pacing in pediatrics and congenital heart disease. J Innov Card Rhythm Manag. 2020;11:4005–4012. PubMed PMC