Evaluation of different methods detecting intracellular generation of free radicals
Language English Country Netherlands Media print-electronic
Document type Evaluation Study, Journal Article, Research Support, Non-U.S. Gov't
- MeSH
- Epithelial Cells metabolism MeSH
- Ethidium analogs & derivatives MeSH
- Fluoresceins MeSH
- Rabbits MeSH
- Rats MeSH
- Methods MeSH
- Molecular Probe Techniques * MeSH
- Myocardium metabolism MeSH
- Lens, Crystalline cytology MeSH
- Reactive Oxygen Species analysis MeSH
- Rhodamines MeSH
- Free Radicals analysis MeSH
- Animals MeSH
- Check Tag
- Rabbits MeSH
- Rats MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Evaluation Study MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- 2',7'-dichlorofluorescein MeSH Browser
- dihydroethidium MeSH Browser
- dihydrorhodamine 123 MeSH Browser
- Ethidium MeSH
- Fluoresceins MeSH
- Reactive Oxygen Species MeSH
- Rhodamines MeSH
- Free Radicals MeSH
Reactive oxygen species (ROS) play several biological roles. We investigated the applicability of fluorescent probes for their detection (i) in rabbit lens epithelial cells during ageing in culture, and (ii) in thin sections of rat heart. We used dihydroethidium (DHE), dichlorofluorescin (DCFH), and dihydrorhodamine 123 (DHR) together with detection of autofluorescence both in cells and in chloroform extracts. Superoxide production was confirmed by a specific histochemical method using Mn(2+). All methods demonstrated higher production of ROS in older cells. All probes revealed different sites of ROS production in young and old cells and could be used for investigation of ROS generation during cell ageing. In the thin sections of rat heart DCFH was not suitable for intracellular ROS detection. The results indicate that the potential of fluorescent dyes in ROS detection is not usually fully exploited, and that blue autofluorescence is associated with oxidative damage.
See more in PubMed
J Gerontol. 1956 Jul;11(3):298-300 PubMed
FEBS Lett. 1997 Sep 22;415(1):21-4 PubMed
Am J Physiol Cell Physiol. 2007 Jan;292(1):C413-22 PubMed
Free Radic Res. 1997 Sep;27(3):245-54 PubMed
Am J Physiol Cell Physiol. 2002 Dec;283(6):C1675-86 PubMed
J Histochem Cytochem. 1979 Jan;27(1):36-43 PubMed
Chem Res Toxicol. 1992 Mar-Apr;5(2):227-31 PubMed
Cell Biochem Funct. 2008 Oct;26(7):801-7 PubMed
Int J Biochem Cell Biol. 1999 Jun;31(6):671-81 PubMed
Nitric Oxide. 1997 Apr;1(2):145-57 PubMed
Am J Physiol Heart Circ Physiol. 2000 Mar;278(3):H982-90 PubMed
Histochemistry. 1986;84(4-6):371-8 PubMed
Arch Biochem Biophys. 1993 May;302(2):348-55 PubMed
Methods Enzymol. 1994;233:619-30 PubMed
Anal Biochem. 1983 Oct 1;134(1):111-6 PubMed
Biochim Biophys Acta. 1988 Feb 19;958(3):375-87 PubMed
Nature. 2000 Nov 9;408(6809):239-47 PubMed
Jpn J Ophthalmol. 1986;30(4):367-75 PubMed
Free Radic Biol Med. 1998 Nov 1;25(7):826-31 PubMed
Proc Natl Acad Sci U S A. 2005 Apr 19;102(16):5727-32 PubMed
Mol Cell Biochem. 2007 Jun;300(1-2):259-67 PubMed
Anal Biochem. 1965 Apr;11:1-5 PubMed
J Gerontol A Biol Sci Med Sci. 2005 Sep;60(9):1087-98 PubMed
Ann N Y Acad Sci. 2004 Jun;1019:70-7 PubMed
Am J Physiol Heart Circ Physiol. 2001 Jun;280(6):H2779-88 PubMed
Generation of hydrogen peroxide in the developing rat heart: the role of elastin metabolism