Kinship and Y-chromosome analysis of 7th century human remains: novel DNA extraction and typing procedure for ancient material
Language English Country Croatia Media print
Document type Historical Article, Journal Article, Research Support, Non-U.S. Gov't
PubMed
19480023
PubMed Central
PMC2702742
DOI
10.3325/cmj.2009.50.286
Knihovny.cz E-resources
- MeSH
- History, Ancient MeSH
- DNA Fingerprinting methods MeSH
- Genetic Markers MeSH
- Genotype MeSH
- Genes, Y-Linked * MeSH
- Humans MeSH
- Microsatellite Repeats MeSH
- Polymerase Chain Reaction MeSH
- Forensic Anthropology * MeSH
- Forensic Genetics * MeSH
- Fossils * MeSH
- Check Tag
- History, Ancient MeSH
- Humans MeSH
- Male MeSH
- Publication type
- Journal Article MeSH
- Historical Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Genetic Markers MeSH
AIM: To develop novel DNA extraction and typing procedure for DNA identification of the 7th century human remains, determine the familiar relationship between the individuals, estimate the Y-chromosome haplogroup, and compare the Y-chromosome haplotype with the contemporary populations. METHODS: DNA from preserved femur samples was extracted using the modified silica-based extraction technique. Polymerase chain reaction amplification was performed using human identification kits MiniFiler, Identifiler, and Y-filer and also laboratory-developed and validated Y-chromosome short tandem repeat (STR) pentaplexes with short amplicons. RESULTS: For 244A, 244B, 244C samples, full autosomal DNA profiles (15 STR markers and Amelogenin) and for 244D, 244E, 244F samples, MiniFiler profiles were produced. Y-chromosome haplotypes consisting of up to 24 STR markers were determined and used to predict the Y-chromosome haplogroups and compare the resulting haplotypes with the current population. Samples 244A, 244B, 244C, and 244D belong to Y-chromosome haplogroup R1b and the samples 244E and 244F to haplogroup G2a. Comparison of ancient haplotypes with the current population yielded numerous close matches with genetic distance below 2. CONCLUSION: Application of forensic genetics in archaeology enables retrieving new types of information and helps in data interpretation. The number of successfully typed autosomal and Y-STR loci from ancient specimens in this study is one of the largest published so far for aged samples.
See more in PubMed
Lassen C, Hummel S, Herrmann B. Molecular sex identification of stillborn and neonate individuals (“Traufkinder”) from the burial site Aegerten. Anthropol Anz. 2000;58:1–8. PubMed
Hummel S, Bramanti B, Finke T, Herrmann B. Evaluation of morphological sex determinations by molecular analyses. Anthropol Anz. 2000;58:9–13. PubMed
Schultes T, Hummel S, Herrmann B. Classification of isolated skeletal elements using aDNA typing. Anthropol Anz. 1997;55:207–16. [in German] PubMed
Schultes T, Hummel S, Herrmann B. Amplification of Y-chromosomal STRs from ancient skeletal material. Hum Genet. 1999;104:164–6. doi: 10.1007/s004390050930. PubMed DOI
Alt K, Vach W. Kinship studies in skeletal remains – concepts and examples. In: Alt KW, Rösing FW, Teschler-Nicola M, editors. Dental anthropology. Fundamentals, limits and prospects. Wien: Springer; 1998.
Melchior L, Gilbert MT, Kivisild T, Lynnerup N, Dissing J. Rare mtDNA haplogroups and genetic differences in rich and poor Danish Iron-Age villages. Am J Phys Anthropol. 2008;135:206–15. doi: 10.1002/ajpa.20721. PubMed DOI
Cipollaro M, Galderisi U, Di Bernardo G. Ancient DNA as a multidisciplinary experience. J Cell Physiol. 2005;202:315–22. doi: 10.1002/jcp.20116. PubMed DOI
Kubalek P, Stolz D, Saskova L, Vanek D. A Near Eastern haplotype in the burial of a young man with a fissure in the skull from the early medieval cemetery at Tetin. Archaelogy in Central Bohemia. 2008;1:645–50. [in Czech]
Koch H. Chronology of Bavarian graves from Ergolding, Hagnerleiten, Landshut. Proceedings 24. Niederbayerischen Archäologentages. 2006;6:191–9. [in German]
Davoren J, Vanek D, Konjhodzic R, Crews J, Huffine E, Parsons TJ. Highly effective DNA extraction method for nuclear short tandem repeat testing of skeletal remains from mass graves. Croat Med J. 2007;48:478–85. PubMed PMC
Hanson EK, Ballantyne J. An ultra-high discrimination y chromosome short tandem repeat multiplex DNA typing system. PLoS One. 2007;2:e688. doi: 10.1371/journal.pone.0000688. PubMed DOI PMC
Taberlet P, Griffin S, Goossens B, Questiau S, Manceau V, Escaravage N, et al. Reliable genotyping of samples with very low DNA quantities using PCR. Nucleic Acids Res. 1996;24:3189–94. doi: 10.1093/nar/24.16.3189. PubMed DOI PMC
Gill P. Application of low copy number DNA profiling. Croat Med J. 2001;42:229–32. PubMed
Riancho JA, Zarrabeitia MTA. Windows-based software for common paternity and sibling analyses. Forensic Sci Int. 2003;135:232–4. doi: 10.1016/S0379-0738(03)00217-2. PubMed DOI
Huckenbeck W, Scheil HG. The distribution of the human DNA-PCR polymorphisms. Available from: http://www.uni-duesseldorf.de/WWW/MedFak/Serology/database.html Accessed: April 28, 2009.
Athey TW. Haplogroup prediction from Y-STR values using an allele-frequency approach. Journal of Genetic Genealogy. 2005;1:1–7.
Scholz M, Giddings I, Pusch CM. A polymerase chain reaction inhibitor of ancient hard and soft tissue DNA extracts is determined as human collagen type I. Anal Biochem. 1998;259:283–6. doi: 10.1006/abio.1998.2676. PubMed DOI
Kemp BM, Monroe C, Smith DG. Repeat silica extraction: a simple technique for the removal of PCR inhibitors from DNA extracts. J Archaeol Sci. 2006;33:1680–9. doi: 10.1016/j.jas.2006.02.015. DOI
Shutler GG, Gagnon P, Verret G, Kalyn H, Korkosh S, Johnston E, et al. Removal of a PCR inhibitor and resolution of DNA STR types in mixed human-canine stains from a five year old case. J Forensic Sci. 1999;44:623–6. PubMed
Butler JM, Shen Y, McCord BR. The development of reduced size STR amplicons as tools for analysis of degraded DNA. J Forensic Sci. 2003;48:1054–64. PubMed
Haak W, Forster P, Bramanti B, Matsumura S, Brandt G, Tanzer M, et al. Ancient DNA from the first European farmers in 7500-year-old Neolithic sites. Science. 2005;310:1016–8. PubMed
Bouwman AS, Brown KA, John A, Prag NW, Brown TA. Kinship between burials from Grave Circle B at Mycenae revealed by ancient DNA typing. J Archaeol Sci. 2008;35:2580–4. doi: 10.1016/j.jas.2008.04.010. DOI
Garcia-Bour J, Perez-Perez A, Alvarez S, Fernandez E, Lopez-Parra AM, Arroyo-Pardo E, et al. Early population differentiation in extinct aborigines from Tierra del Fuego-Patagonia: ancient mtDNA sequences and Y-chromosome STR characterization. Am J Phys Anthropol. 2004;123:361–70. doi: 10.1002/ajpa.10337. PubMed DOI
Schultes T, Hummel S, Herrmann B. Ancient DNA-typing approaches for the determination of kinship in a disturbed collective burial site. Anthropol Anz. 2000;58:37–44. PubMed
Butler JM, Schoske R. Duplication of DYS19 flanking regions in other parts of the Y chromosome. Int J Legal Med. 2004;118:178–83. doi: 10.1007/s00414-004-0436-5. PubMed DOI
Balaresque P, Parkin EJ, Roewer L, Carvalho-Silva DR, Mitchell RJ, van Oorschot RA, et al. Genomic complexity of the Y-STR DYS19: inversions, deletions and founder lineages carrying duplications. Int J Legal Med. 2009;123:15–23. doi: 10.1007/s00414-008-0253-3. PubMed DOI PMC
Wiik K. Where did European men come from? Journal of Genetic Genealogy. 2008;4:35–85.
Handt O, Hoss M, Krings M, Paabo S. Ancient DNA: methodological challenges. Experientia. 1994;50:524–9. doi: 10.1007/BF01921720. PubMed DOI
Yang DY, Watt K. Contamination controls when preparing archaeological remains for ancient DNA analysis. J Archaeol Sci. 2005;32:331–6. doi: 10.1016/j.jas.2004.09.008. DOI
Results of a collaborative study on DNA identification of aged bone samples