Guided optimization of fluid status in haemodialysis patients
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu klinické zkoušky, časopisecké články
PubMed
19793930
PubMed Central
PMC2809248
DOI
10.1093/ndt/gfp487
PII: gfp487
Knihovny.cz E-zdroje
- MeSH
- dialýza ledvin * škodlivé účinky MeSH
- elektrická impedance MeSH
- lidé středního věku MeSH
- lidé MeSH
- monitorování fyziologických funkcí metody MeSH
- prospektivní studie MeSH
- složení těla * MeSH
- tělesné tekutiny * MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- klinické zkoušky MeSH
BACKGROUND: Achieving normohydration remains a non-trivial issue in haemodialysis therapy. Guiding the haemodialysis patient on the path between fluid overload and dehydration should be the clinical target, although it can be difficult to achieve this target in practice. Objective and clinically applicable methods for the determination of the normohydration status on an individual basis are needed to help in the identification of an appropriate target weight. METHODS: The aim of this prospective trial was to guide the patient population of a complete dialysis centre towards normohydration over the course of approximately 1 year. Fluid status was assessed frequently (at least monthly) in haemodialysis patients (n = 52) with the body composition monitor (BCM), which is based on whole body bioimpedance spectroscopy. The BCM provides the clinician with an objective target for normohydration. The patient population was divided into three groups: the hyperhydrated group (relative fluid overload >15% of extracellular water (ECW); n = 13; Group A), the adverse event group (patients with more than two adverse events in the last 4 weeks; n = 12; Group B) and the remaining patients (n = 27; Group C). RESULTS: In the hyperhydrated group (Group A), fluid overload was reduced by 2.0 L (P < 0.001) without increasing the occurrence of intradialytic adverse events. This resulted in a reduction in systolic blood pressure of 25 mmHg (P = 0.012). Additionally, a 35% reduction in antihypertensive medication (P = 0.031) was achieved. In the adverse event group (Group B), the fluid status was increased by 1.3 L (P = 0.004) resulting in a 73% reduction in intradialytic adverse events (P < 0.001) without significantly increasing the blood pressure. CONCLUSION: The BCM provides an objective assessment of normohydration that is clinically applicable. Guiding the patients towards this target of normohydration leads to better control of hypertension in hyperhydrated patients, less intradialytic adverse events and improved cardiac function.
Zobrazit více v PubMed
Dorhout Mees EJ. Cardiovascular Aspects of Dialysis Treatment: The Importance of Volume Control. Dordrecht, The Netherlands: Kluwer; 2000.
Passauer J. Dialysis hypotension: do we see light at the end of the tunnel? Nephrol Dial Transplant. 1998;13:3024–3029. PubMed
Steuer RR, Conis JM. The incidence of hypovolemic morbidity in hemodialysis. Dial Transplant. 1996;25:272–281.
Jaeger JQ, Mehta RL. Assessment of dry weight in hemodialysis: an overview. J Am Soc Nephrol. 1999;10:392–403. PubMed
Leypoldt JK, Cheung AK, Delmez JA, et al. Relationship between volume status and blood pressure during chronic hemodialysis. Kidney Int. 2002;61:266–275. PubMed
Pierratos A. Daily nocturnal home hemodialysis. Kidney Int. 2004;65:1975–1986. PubMed
Chan CT, Floras JS, Miller JA, et al. Regression of left ventricular hypertrophy after conversion to nocturnal hemodialysis. Kidney Int. 2002;61:2235–2239. PubMed
Ozkahya M, Ok E, Toz H, et al. Long-term survival rates in haemodialysis patients treated with strict volume control. Nephrol Dial Transplant. 2006;21:3506–3513. PubMed
Wizemann V, Wabel P, Chamney P, et al. The mortality risk of overhydration in haemodialysis patients. Nephrol Dial Transplant. 2009;24:1574–1579. PubMed PMC
Wizemann V, Rode C, Wabel P. Whole-body spectroscopy (BCM) in the assessment of normovolemia in hemodialysis patients. Contrib Nephrol. 2008;161:115–118. PubMed
Cole KS, Cole RH. Dispersion and adsorption in dielectrics. J Chem Phys. 1941;9:341–351.
Cole KS, Li CL, Bak AF. Electrical analogues for tissues. Exp Neurol. 1969;24:459–473. PubMed
Moissl UM, Wabel P, Chamney PW, et al. Body fluid volume determination via body composition spectroscopy in health and disease. Physiol Meas. 2006;27:921–933. PubMed
Chamney PW, Wabel P, Moissl UM, et al. A whole-body model to distinguish excess fluid from the hydration of major body tissues. Am J Clin Nutr. 2007;85:80–89. PubMed
Wabel P, Chamney PW, Moissl U, et al. Reproducibility of bioimpedance spectroscopy (BIS) for the assessment of body composition and dry weight. J Am Soc Nephrol. 2007;18:255A. PubMed
Wabel P, Chamney PW, Moissl U, et al. Reproducibility of bioimpedance spectroscopy (BIS) in health and disease (abstract) Nephrol Dial Transplant. 2007;22(Suppl 6):VI 137.
Plum J, Schoenicke G, Kleophas W, et al. Comparison of body fluid distribution between chronic hemodialysis and peritoneal dialysis patients as assessed by biophysical and biochemical methods. Nephrol Dial Transplant. 2005;2001:2378–2385. PubMed
Kraemer M, Rode C, Wizemann V. Detection limit of methods to assess fluid status changes in dialysis patients. Kidney Int. 2006;69:1609–1620. PubMed
Moissl U, Bosaeus I, Lemmey A, et al. Validation of a 3C model for determination of body fat mass. J Am Soc Nephrol. 2007;18:257A.
Moissl U, Wabel P, Chamney PW, et al. Validation of a bioimpedance spectroscopy method for the assessment of fat free mass. NDT Plus. 2008;1(Suppl 2):ii215.
Passauer J, Miller H, Schleser A, et al. Evaluation of clinical dry weight assessment in haemodialysis patients by bioimpedance-spectroscopy. J Am Soc Nephrol. 2007;18:256A. PubMed
Wabel P, Rode C, Moissl U, et al. Accuracy of bioimpedance spectroscopy (BIS) to detect fluid status changes in hemodialysis patients (abstract) Nephrol Dial Transplant. 2007;22(Suppl 6):VI 129.
Wabel P, Moissl U, Chamney P, et al. Towards improved cardiovascular management: the necessity of combining blood pressure and fluid overload. Nephrol Dial Transplant. 2008;23:2965–2971. PubMed
Agarwal R. Assessment of blood pressure in hemodialysis patients. Semin Dial. 2002;15:299–304. PubMed
Daugirdas JT. Second generation logarithmic estimates of single-pool variable volume Kt/V: an analysis of error. J Am Soc Nephrol. 1993;4:1205–1213. PubMed
Kooman J, Basci A, Pizzarelli F, et al. EBPG guideline on haemodynamic instability. Nephrol Dial Transplant. 2007;22(Suppl 2):ii22–ii44. PubMed
Wizemann V, Rode C, Chamney PW, et al. Fluid overload and malnutrition assessed with bioimpedance spectroscopy (BIS) are strong predictors of mortality in hemodialysis patients. Nephrol Dial Transplant Plus. 2008;1(Suppl 2):ii16–ii17.
Dogan E, Erkoc R, Sayarlioglu H, et al. Effects of late referral to a nephrologist in patients with chronic renal failure. Nephrology (Carlton) 2005;10:516–519. PubMed
Charra B. Fluid balance, dry weight, and blood pressure in dialysis. Hemodial Int. 2007;11:21–31. PubMed
Wystrychowski G, Levin NW. Dry weight: sine qua non of adequate dialysis. Adv Chronic Kidney Dis. 2007;14:e10–e16. PubMed
Wabel P, Chamney P, Moissl U, et al. Importance of whole-body bioimpedance spectroscopy for the management of fluid balance. Blood Purif. 2009;27:75–80. PubMed PMC
Agarwal R, Alborzi P, Satyan S, et al. Dry-weight reduction in hypertensive hemodialysis patients (DRIP): a randomized, controlled trial. Hypertension. 2009;53:500–507. PubMed PMC
Mark PB, Patel RK, Jardine AG. Are we overestimating left ventricular abnormalities in end-stage renal disease? Nephrol Dial Transplant. 2007;22:1815–1819. PubMed
Mark PB, Doyle A, Blyth KG, et al. Vascular function assessed with cardiovascular magnetic resonance predicts survival in patients with advanced chronic kidney disease. J Cardiovasc Magn Reson. 2008;10:39. PubMed PMC
Toz H, Ozkahya M, Ozerkan F, et al. Improvement in ‘uremic’ cardiomyopathy by persistent ultrafiltration. Hemodial Int. 2007;11:46–50. PubMed