Plant intelligence: why, why not or where?
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem, přehledy
PubMed
19816094
PubMed Central
PMC2676749
DOI
10.4161/psb.4.5.8276
PII: 8276
Knihovny.cz E-zdroje
- MeSH
- algoritmy MeSH
- biologické modely * MeSH
- fyziologická adaptace * MeSH
- fyziologie rostlin * MeSH
- vývoj rostlin * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
The concept of plant intelligence, as proposed by Anthony Trewavas, has raised considerable discussion. However, plant intelligence remains loosely defined; often it is either perceived as practically synonymous to Darwinian fitness, or reduced to a mere decorative metaphor. A more strict view can be taken, emphasizing necessary prerequisites such as memory and learning, which requires clarifying the definition of memory itself. To qualify as memories, traces of past events have to be not only stored, but also actively accessed. We propose a criterion for eliminating false candidates of possible plant intelligence phenomena in this stricter sense: an "intelligent" behavior must involve a component that can be approximated by a plausible algorithmic model involving recourse to stored information about past states of the individual or its environment. Re-evaluation of previously presented examples of plant intelligence shows that only some of them pass our test.
Zobrazit více v PubMed
Maeterlinck M. L'Intelligence des Fleurs. Paris: E. Fasquelle; 1907. pp. 1–313.
Trewavas A. Mindless mastery. Nature. 2002;415:841. PubMed
Trewavas A. Aspects of plant intelligence. Ann Bot. 2003;92:1–20. PubMed PMC
Firn R. Plant intelligence: an alternative point of view. Ann Bot. 2004;93:345–351. PubMed PMC
Trewavas A. Aspects of plant intelligence: an answer to Firn. Ann Bot. 2004;93:353–357. PubMed PMC
Trewavas A. Plant intelligence. Naturwissenschaften. 2005;92:401–413. PubMed
Trewavas A. Green plants as intelligent organisms. Trends Plant Sci. 2005;10:413–419. PubMed
Brenner ED, Stahlberg R, Mancuso S, Vivanco J, Baluška F, Van Volkenburgh E. Plant neurobiology: an integrated view of plant signalling. Trends Plant Sci. 2006;11:413–419. PubMed
Alpi A, Amrhein N, Bertl A, Blatt MR, Blumwald E, Cervone F, et al. Plant neurobiology: no brain, no gain? Trends Plant Sci. 2007;12:135–136. PubMed
Trewavas A. Plant neurobiology—all metaphors have value. Trends Plant Sci. 2007;12:231–233. PubMed
Brenner ED, Stahlberg R, Mancuso S, Baluška F, Van Volkenburgh E. Response to Alpi, et al.: plant neurobiology: the gain is more than the name. Trends Plant Sci. 2007;12:285–286. PubMed
Ptashne M. A genetic switch. Third edition: phage lambda revisited. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press; 2004. pp. 1–154.
Bose I, Karmakar R. Simple models of plant learning and memory. arXiv:cond-mat. 2003 0306738v2 (last update 2008)
Inoue J. A simple Hopfield-like cellular network model of plant intelligence. Prog Brain Res. 2008;168:169–174. PubMed
Gernert D. Ockham's razor and its improper use. J Scientific Exploration. 2007;21:135–140.
Tinbergen N. On aims and methods of ethology. Z Tierpsychol. 1963;20:410–433.
Baluška F, Volkmann D, Menzel D. Plant synapses: actin-based domains for cell-to-cell communication. Trends Plant Sci. 2005;10:106–111. PubMed
Stenhouse D. The evolution of intelligence—a general theory and some of its implications. London: George Allen and Unwin; 1974. pp. 1–376.
Trewavas A. What is plant behaviour? Plant Cell Environ. 2009 accepted. PubMed
Thagard P. Introduction to cognitive science. Cambridge, MA: MIT Press; 1996. Mind; pp. 1–213.
Molvray M. Biological factors in the evolution of intelligence. 2007. http://www.molvray.com/sf/exobio/recog.htm.
Computer Hope Dictionary. 2008. Anonymous. http://www.computerhope.com.
MedTerms Dictionary. 2008. Anonymous. http://www.medterms.com.
Crone EE. Is survivorship a better fitness indicator than fecundity? Evolution. 2001;55:2611–2614. PubMed
Trewavas A. How plants learn. Proc Natl Acad Sci USA. 1999;96:4216–4218. PubMed PMC
Prusinkiewicz P, Lindenmeyer A. The algorithmic beauty of plants. New York—Berlin—Heidelberg: Springer; 1990. pp. 1–228.
Prusinkiewicz P, Hammel M, Mech R. Visual Models of Morphogenesis: A Guided Tour. 1997. http://algorithmicbotany.org.
Prusinkiewicz P, Hanan J, Hammel M, Mech R, Room PM, Remphrey WR, et al. Plants to ecosystems: Advances in computational life sciences. Colingwood (Australia): CSIRO. 1997:1–134.
Prusinkiewicz P, Rolland-Lagan A-G. Modeling plant morphogenesis. Curr Opin Plant Biol. 2006;9:83–88. PubMed
Perera IY, Heilmann I, Chang SC, Boss WF, Kaufman PB. A role for inositol 1,4,5-trisphosphate in gravitropic signaling and the retention of cold-perceived gravistimulation of oat shoot pulvini. Plant Physiol. 2001;125:1499–1507. PubMed PMC
Rieger T, Neubauer Z, Blahušková A, Cvrčcková F, Markoš A. Bacterial body plans: colony ontogeny in Serratia marcescens. Communicative and Integrative Biology. 2008;1:78–87. PubMed PMC
Sachs T. Integrating cellular and organismic aspects of vascular differentiation. Plant Cell Physiol. 2000;41:649–656. PubMed
Sauer M, Balla J, Luschnig C, Wisniewska J, Reinohl V, Friml J, Benková E. Canalization of auxin flow by Aux/IAA-ARF-dependent feedback regulation of PIN polarity. Genes Dev. 2006;20:2902–2911. PubMed PMC
Rolland-Lagan A-G, Prusinkiewicz P. Reviewing models of auxin canalization in the context of leaf vein pattern formation in Arabidopsis. Plant J. 2005;44:854–865. PubMed
Smith RS, Guyomarc'h S, Mandel T, Reinhardt D, Kuhlemeier C, Prusinkiewicz P. A plausible model of phyllotaxis. Proc Natl Acad Sci USA. 2006;103:1301–1306. PubMed PMC
Thellier M, Desbiez MO, Champagnat P, Kergosien Y. Do memory processes occur also in plants? Physiol Plant. 1982;56:281–284.
Desbiez MO, Tort M, Thellier M. Control of a symmetry-breaking process in the course of the morphogenesis of plantlets of Bidens pilosa L. Planta. 1991;184:397–402. PubMed
Hartmann KM, Grundy AC, Market R. Phytochrome-mediated long-term memory of seeds. Protoplasma. 2005;227:47–52. PubMed
Sung S, Amasino RM. Molecular genetic studies of the memory of winter. J Exp Bot. 2006;57:3369–3377. PubMed
Alexandre CM, Hennig L. FLC or not FLC: the other side of vernalization. J Exp Bot. 2008;59:1127–1135. PubMed
Holdsworth MJ, Bentsink L, Soppe WJJ. Molecular networks regulating Arabidopsis seed maturation, afterripening, dormancy and germination. New Phytologist. 2008;179:33–54. PubMed
Nemhauser JL. Dawning of a new era: photomorphogenesis as an integrated molecular network. Curr Opin Plant Biol. 2008;11:4–8. PubMed
Nozue K, Maloof JN. Diurnal regulation of plant growth. Plant Cell Environ. 2006;29:396–408. PubMed
Baena-González E, Sheen J. Convergent energy and stress signaling. Trends Plant Sci. 2008;13:474–482. PubMed PMC
Smith AM, Stitt M. Coordination of carbon supply and plant growth. Plant Cell Environ. 2007;30:1126–1149. PubMed
Gibon Y, Bläsing OE, Palacios-Rojas N, Pankovic D, Hendriks JHM, Fisahn J, et al. Adjustment of diurnal starch turnover to short days: depletion of sugar during the night leads to a temporary inhibition of carbohydrate utilization, accumulation of sugars and post-translational activation of ADP-glucose pyrophosphorylase in the following light period. Plant J. 2008;39:847–862. PubMed
Stitt M, Gibon Y, Lunn JE, Piques M. Multilevel genomics analysis of carbon signalling during low carbon availability: coordinating the supply and utilisation of carbon in a fluctuating environment. Funct Plant Biol. 2007;34:526–549. PubMed
Barbieri M. The organic codes. The birth of semantic biology. Ancona: peQuod. 2001:1–250.