Substituted pyrazinecarboxamides as abiotic elicitors of flavolignan production in Silybum marianum (L.) gaertn cultures in vitro
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
20110894
PubMed Central
PMC6256978
DOI
10.3390/molecules15010331
PII: 15010331
Knihovny.cz E-zdroje
- MeSH
- flavonolignany analýza biosyntéza chemie MeSH
- ostropestřec mariánský účinky léků metabolismus MeSH
- pyraziny chemie farmakologie MeSH
- quercetin analogy a deriváty analýza chemie MeSH
- techniky tkáňových kultur metody MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- flavonolignany MeSH
- pyraziny MeSH
- quercetin MeSH
- taxifolin MeSH Prohlížeč
Substituted pyrazinecarboxamides markedly influenced production of flavonolignans in Silybum marianum callus and suspension cultures. In this study the effect of two compounds, N-(3-iodo-4-methylphenyl)pyrazine-2-carboxamide (1) and N-(3-iodo-4-methylphenyl)-5-tert-butyl-pyrazine-2-carboxamide (2), as abiotic elicitors on flavono-lignan production in callus culture of S. marianum was investigated. Silymarin complex compounds have hepatoprotective, anticancer and also hypocholesterolemic activity. In vitro flavonolignan concentration in cells is very low and the elicitation is one of the methods to increase production. Elicitors were tested at three concentrations and at different culture times. In the case of elicitation with 1, the greatest increase of flavonolignan and taxifoline production was observed at concentration c(1a) after 6-hours of elicitation and after 24 and 72-hours at concentration c(1b). However, increased production of silychristin, one of the compounds in the silymarin complex, was achieved after only 6-hours elicitation with c(1a) (2.95 x 10(-4) mol/L). The content of silychristin was 2-times higher compared to the control sample. An increased production of silychristin was reached with compound 2 at the concentration c(2) (2.53 x 10(-3) mol/L) after 72 h of elicitation. The production of silychristin in this case was increased 12-times compared to control.
Zobrazit více v PubMed
Doležal M. Biologicky aktivní pyraziny přírodního a syntetického původu. Chem. Listy. 2006;100:959–966.
Doležal M., Miletín M., Kuneš J., Kráľová K. Substituted amides of pyrazine-2-carboxylic acids, their synthesis and biological activity. Molecules. 2002;7:363–373. doi: 10.3390/70300363. DOI
Ricci D., Maggiali C.A., Ronchini F., Tirillini B., Fraternale D. Auxin activity of diazine carboxylic acids. Phytochemistry. 1991;30:2821–2824. doi: 10.1016/S0031-9422(00)98205-0. DOI
Doležal M., Čmedlová P., Palek L., Vinšová J., Kuneš J., Buchta V., Jampílek J., Kráľová K. Synthesis and biological evaluation of pyrazinecarboxamides. Eur. J. Med. Chem. 2008;43:1105–1113. doi: 10.1016/j.ejmech.2007.07.013. PubMed DOI
Tůmová L., Ostrožlík P. Ononis arvensis in vitro - abiotická elicitace. Czech. Slov. Pharm. 2002;4:173–176. PubMed
Doležal M., Tůmová L., Kešetovičová D., Tůma J., Kráľová K. Substituted N-phenylpyrazine-2-carboxamides, their synthesis and evaluation as herbicides and abiotic elicitors. Molecules. 2007;12:2589–2598. doi: 10.3390/12122589. PubMed DOI PMC
Arvind S., Negi J.K., Kumar S.L., Karuna S., Gupta M.M., Khanuja S.P.S. Recent advances in plant hepatoprotectives: A chemical and biological profile of some important leads. Med. Res. Rev. 2008;28:746–772. doi: 10.1002/med.20115. PubMed DOI
Gažák R., Walterová D., Kren V. Silybin and silymarin – new and emerging application in medicine. Curr. Med. Chem. 2007;14:315–338. doi: 10.2174/092986707779941159. PubMed DOI
Jung H.J., Park J.W., Lee J.S., Lee S.R., Jang B.C., Suh S.I., Suh M.H., Baek W.K. Silibinin inhibits expression of HIF-1 alpha through suppression of protein translation in prostate cancer cells. Biochem. Biophys. Res. Com. 2009;390:71–76. doi: 10.1016/j.bbrc.2009.09.068. PubMed DOI
Kim S., Choi M.G., Lee H.S., Lee S.K., Kim S.H., Kim W.W., Hur S.M., Kim J.H., Choe J.H., Nam S.J., Yang J.H., Kim S., Lee J.E., Kim J.S. Silibinin suppresses TNF-α-induced MMP-9 expression in gastric cancer cells through inhibition of the MAPK pathway. Molecules. 2009;14:4300–4311. doi: 10.3390/molecules14114300. PubMed DOI PMC
Singh R.P., Agarwal R. Cosmeceuticals and silibinin. Clinic. Dermatol. 2009;27:479–484. PubMed PMC
Tůmová L., Gallová K., Řimáková J., Doležal M., Tůma J. The effect of substituted amides of pyrazine-2-carboxylic acids on flavonolignan production in Silybum marianum culture in vitro. Acta Physiol. Plant. 2005;27:357–362. doi: 10.1007/s11738-005-0012-8. DOI
Geneva M., Stancheva I., Sichanova M., Boychinova M., Georgiev G., Doležal M. Improvement of milk thistle (Silybum marianum L.) seed yield and quality with foliar fertilization and growth effector MD 148/II. Gen. Appl. Plant Physiol. 2008;34:309–317.
Stancheva I., Georgiev G., Geneva M., Ivanova A., Doležal M., Tůmová L. Influence of foliar fertilization and growth effector 5-tert-butyl-N-m-tolylpyrazine-2-carboxamide (MD 148/II) on the milk thistle (Silybum marianum L.) seed yield and quality. J. Plant Nutr. 2010;33 in press.
Doležal M., Zitko J., Kešetovičová D., Kuneš J., Svobodová M. Substituted N-phenylpyrazine-2-carboxamides: Synthesis and antimycobacterial evaluation. Molecules. 2009;14:4180–4189. doi: 10.3390/molecules14104180. PubMed DOI PMC
Murashige T., Skoog F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 1962;15:437–497. doi: 10.1111/j.1399-3054.1962.tb08047.x. DOI