Substituted pyrazinecarboxamides as abiotic elicitors of flavolignan production in Silybum marianum (L.) gaertn cultures in vitro

. 2010 Jan 14 ; 15 (1) : 331-40. [epub] 20100114

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid20110894

Substituted pyrazinecarboxamides markedly influenced production of flavonolignans in Silybum marianum callus and suspension cultures. In this study the effect of two compounds, N-(3-iodo-4-methylphenyl)pyrazine-2-carboxamide (1) and N-(3-iodo-4-methylphenyl)-5-tert-butyl-pyrazine-2-carboxamide (2), as abiotic elicitors on flavono-lignan production in callus culture of S. marianum was investigated. Silymarin complex compounds have hepatoprotective, anticancer and also hypocholesterolemic activity. In vitro flavonolignan concentration in cells is very low and the elicitation is one of the methods to increase production. Elicitors were tested at three concentrations and at different culture times. In the case of elicitation with 1, the greatest increase of flavonolignan and taxifoline production was observed at concentration c(1a) after 6-hours of elicitation and after 24 and 72-hours at concentration c(1b). However, increased production of silychristin, one of the compounds in the silymarin complex, was achieved after only 6-hours elicitation with c(1a) (2.95 x 10(-4) mol/L). The content of silychristin was 2-times higher compared to the control sample. An increased production of silychristin was reached with compound 2 at the concentration c(2) (2.53 x 10(-3) mol/L) after 72 h of elicitation. The production of silychristin in this case was increased 12-times compared to control.

Zobrazit více v PubMed

Doležal M. Biologicky aktivní pyraziny přírodního a syntetického původu. Chem. Listy. 2006;100:959–966.

Doležal M., Miletín M., Kuneš J., Kráľová K. Substituted amides of pyrazine-2-carboxylic acids, their synthesis and biological activity. Molecules. 2002;7:363–373. doi: 10.3390/70300363. DOI

Ricci D., Maggiali C.A., Ronchini F., Tirillini B., Fraternale D. Auxin activity of diazine carboxylic acids. Phytochemistry. 1991;30:2821–2824. doi: 10.1016/S0031-9422(00)98205-0. DOI

Doležal M., Čmedlová P., Palek L., Vinšová J., Kuneš J., Buchta V., Jampílek J., Kráľová K. Synthesis and biological evaluation of pyrazinecarboxamides. Eur. J. Med. Chem. 2008;43:1105–1113. doi: 10.1016/j.ejmech.2007.07.013. PubMed DOI

Tůmová L., Ostrožlík P. Ononis arvensis in vitro - abiotická elicitace. Czech. Slov. Pharm. 2002;4:173–176. PubMed

Doležal M., Tůmová L., Kešetovičová D., Tůma J., Kráľová K. Substituted N-phenylpyrazine-2-carboxamides, their synthesis and evaluation as herbicides and abiotic elicitors. Molecules. 2007;12:2589–2598. doi: 10.3390/12122589. PubMed DOI PMC

Arvind S., Negi J.K., Kumar S.L., Karuna S., Gupta M.M., Khanuja S.P.S. Recent advances in plant hepatoprotectives: A chemical and biological profile of some important leads. Med. Res. Rev. 2008;28:746–772. doi: 10.1002/med.20115. PubMed DOI

Gažák R., Walterová D., Kren V. Silybin and silymarin – new and emerging application in medicine. Curr. Med. Chem. 2007;14:315–338. doi: 10.2174/092986707779941159. PubMed DOI

Jung H.J., Park J.W., Lee J.S., Lee S.R., Jang B.C., Suh S.I., Suh M.H., Baek W.K. Silibinin inhibits expression of HIF-1 alpha through suppression of protein translation in prostate cancer cells. Biochem. Biophys. Res. Com. 2009;390:71–76. doi: 10.1016/j.bbrc.2009.09.068. PubMed DOI

Kim S., Choi M.G., Lee H.S., Lee S.K., Kim S.H., Kim W.W., Hur S.M., Kim J.H., Choe J.H., Nam S.J., Yang J.H., Kim S., Lee J.E., Kim J.S. Silibinin suppresses TNF-α-induced MMP-9 expression in gastric cancer cells through inhibition of the MAPK pathway. Molecules. 2009;14:4300–4311. doi: 10.3390/molecules14114300. PubMed DOI PMC

Singh R.P., Agarwal R. Cosmeceuticals and silibinin. Clinic. Dermatol. 2009;27:479–484. PubMed PMC

Tůmová L., Gallová K., Řimáková J., Doležal M., Tůma J. The effect of substituted amides of pyrazine-2-carboxylic acids on flavonolignan production in Silybum marianum culture in vitro. Acta Physiol. Plant. 2005;27:357–362. doi: 10.1007/s11738-005-0012-8. DOI

Geneva M., Stancheva I., Sichanova M., Boychinova M., Georgiev G., Doležal M. Improvement of milk thistle (Silybum marianum L.) seed yield and quality with foliar fertilization and growth effector MD 148/II. Gen. Appl. Plant Physiol. 2008;34:309–317.

Stancheva I., Georgiev G., Geneva M., Ivanova A., Doležal M., Tůmová L. Influence of foliar fertilization and growth effector 5-tert-butyl-N-m-tolylpyrazine-2-carboxamide (MD 148/II) on the milk thistle (Silybum marianum L.) seed yield and quality. J. Plant Nutr. 2010;33 in press.

Doležal M., Zitko J., Kešetovičová D., Kuneš J., Svobodová M. Substituted N-phenylpyrazine-2-carboxamides: Synthesis and antimycobacterial evaluation. Molecules. 2009;14:4180–4189. doi: 10.3390/molecules14104180. PubMed DOI PMC

Murashige T., Skoog F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 1962;15:437–497. doi: 10.1111/j.1399-3054.1962.tb08047.x. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...