Are the immunocompetence and the presence of metazoan parasites in cyprinid fish affected by reproductive efforts of cyprinid fish?
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
20145709
PubMed Central
PMC2817375
DOI
10.1155/2010/418382
Knihovny.cz E-zdroje
- MeSH
- analýza hlavních komponent MeSH
- analýza rozptylu MeSH
- Cyprinidae imunologie parazitologie fyziologie MeSH
- interakce hostitele a parazita MeSH
- nemoci ryb krev imunologie parazitologie MeSH
- parazitární nemoci u zvířat krev imunologie parazitologie MeSH
- počet leukocytů MeSH
- rozmnožování imunologie fyziologie MeSH
- tělesné váhy a míry MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Each organism has the limited resources of energy that is distributed among important life traits. A trade-off between immune response and other physiological demands of organism especially costly reproduction is expected. Leuciscus cephalus, the cyprinid fish, was investigated during three periods varying in reproductive investment, that is, before-breeding, breeding, and after-breeding periods. We tested whether a potentially limited investment in immunity during the breeding is associated with higher susceptibility to the metazoan parasites. Following the immunocompetence handicap and sperm protection hypotheses, males expressing more elaborated sexual ornamentation should produce better quality sperm and be more parasitized. We found that reproductive investments in fish play an important role for energy allocation into somatic condition, immunity, and reproduction. The immune parameters including respiratory burst and leukocyte count were higher in breeding; however, parasite species richness and abundance appeared low. Males investing more in spawning tubercles reached high spermatocrite and were more parasitized by digeneans.
Zobrazit více v PubMed
Roff DA. The Evolution of Life Histories: Theory and Analysis. New York, NY, USA: Chapman & Hall; 1992.
Stearns SC. The Evolution of Life Histories. Oxford, UK: Oxford University Press; 1992.
Sheldon BC, Verhulst S. Ecological immunology: costly parasite defences and trade-offs in evolutionary ecology. Trends in Ecology & Evolution. 1996;11(8):317–321. PubMed
Møller AP. Immune defence, extra-pair paternity, and sexual selection in birds. Proceedings of the Royal Society B. 1997;264(1381):561–566.
Szép T, Møller AP. Cost of parasitism and host immune defence in the sand martin Riparia riparia: a role for parent-offspring conflict? Oecologia. 1999;119(1):9–15. PubMed
Hasselquist D, Wasson MF, Winkler DW. Humoral immunocompetence correlates with date of egg-laying and reflects work load in female tree swallows. Behavioral Ecology. 2001;12(1):93–97.
Møller AP, Saino N. Immune response and survival. Oikos. 2004;104(2):299–304.
Hillgarth N, Ramenofsky M, Wingfield J. Testosterone and sexual selection. Behavioral Ecology. 1997;8(1):108–112.
Skarstein F, Folstad I, Liljedal S. Whether to reproduce or not: Immune suppression and costs of parasites during reproduction in the Arctic charr. Canadian Journal of Zoology. 2001;79(2):271–278.
Ottová E, Šimková A, Jurajda P, et al. Sexual ornamentation and parasite infection in males of common bream (Abramis brama): a reflection of immunocompetence status or simple cost of reproduction? Evolutionary Ecology Research. 2005;7(4):581–593.
Hamilton WD, Zuk M. Heritable true fitness and bright birds: a role for parasites? Science. 1982;218(4570):384–387. PubMed
Hamilton WJ, Poulin R. The Hamilton and Zuk hypothesis revisited: a meta-analytical approach. Behaviour. 1997;134(4-5):299–320.
Møller AP, Christe P, Lux E. Parasitism, host immune function, and sexual selection. Quarterly Review of Biology. 1999;74(1):3–20. PubMed
Roberts ML, Buchanan KL, Evans MR. Testing the immunocompetence handicap hypothesis: a review of the evidence. Animal Behaviour. 2004;68(2):227–239.
Folstad I, Karter AJ. Parasites, bright males, and the immunocompetence handicap. American Naturalist. 1992;139(3):603–622.
Folstad I, Skarstein F. Is male germ line control creating avenues for female choice? Behavioral Ecology. 1997;8(1):109–112.
Liljedal S, Folstad I, Skarstein F. Secondary sex traits, parasites, immunity and ejaculate quality in the Arctic charr. Proceedings of the Royal Society B. 1999;266(1431):1893–1898.
Kortet R, Vainikka A, Rantala MJ, Taskinen J. Sperm quality, secondary sexual characters and parasitism in roach (Rutilus rutilus L.) Biological Journal of the Linnean Society. 2004;81(1):111–117.
Baruš V, Oliva O. Lampreys (Petromyzones) and Fishes (Osteichthyes). Fauna of the Czech and Slovak Republics. Praha, Czech Republic: Academia; 1995.
Wiley ML, Collette BB. Breeding tubercles and contact organs in fishes: their occurrence, structure and significance. Bulletin of the American Museum of Natural History. 1970;143(3):143–216.
Kortet R, Taskinen J, Vainikka A, Ylönen H. Breeding tubercles, papillomatosis and dominance behaviour of male roach (Rutilus rutilus) during the spawning period. Ethology. 2004;110(8):591–601.
Wedekind C. Detailed information about parasites revealed by sexual ornamentation. Proceedings of the Royal Society B. 1992;247(1320):169–174.
Taskinen J, Kortet R. Dead and alive parasites: sexual ornaments signal resistance in the male fish, Rutilus rutilus. Evolutionary Ecology Research. 2002;4(6):919–929.
Skarstein F, Folstad I. Sexual dichromatism and the immunocompetence handicap: an observational approach using Arctic charr. Oikos. 1996;76(2):359–367.
Modrá H, Svobodová Z, Kolářová J. Comparison of differential leukocyte counts in fish of economic and indicator importance. Acta Veterinaria Brno. 1998;67(4):215–226.
Kubala L, Lojek A, Číž M, Vondráček J, Dušková M, Slavíková H. Determination of phagocyte activity in whole blood of carp (Cyprinus carpio) by luminol-enhanced chemiluminescence. Veterinarni Medicina. 1996;41(10):323–327. PubMed
Ergens R, Lom J. Causative Agents of Parasitic Fish Diseases. Prague, Czech Republic: Academia; 1970.
Bolger T, Connolly PL. The selection of suitable indices for the measurement and analysis of fish condition. Journal of Fish Biology. 1989;34(2):171–182.
Gusev AV. Metazoan parasites—part I. In: Bauer ON, editor. Identification Key to Parasites of Freshwater Fish. Vol. 2. Leningrad, Russia: Nauka; 1985. p. 424.
Khotenovsky IA. Fauna of the SSSR, Monogenea. Leningrad, Russia: Nauka; 1985.
Scholz T. Amphilinida and Cestoda, parasites of fish in Czechoslovakia. Acta Scientiarum Naturalium Academiae Scientiarum Bohemicae Brno. 1989;23(4):1–56.
Moravec F. Parasitic Nematodes of Freshwater Fishes of Europe. Praha, Czech Republic: Academia and Kluwer Academic Publishers; 1994.
Georgiev B, Bisekov V, Genov T. The staining method for cestodes with iron acetocarmine. Helminthologia. 1986;23:279–281.
Svobodová Z, Pravda D, Paláčková J. Unified Methods of Haematological Examination of Fish. Vol. 22. Vodňany, Czech Republic: Manuals of Research Institute of Fish Culture and Hydrobiology, University of South Bohemia; 1991.
Svobodová Z, Pravda D, Paláčková J. Universal Methods of Haematological Investigations in Fish. Vodňany, Czech Republic: VÚRH; 1986. (Edice Metodik, no. 22).
Lusková V. Annual cycles and normal values of hematological parameters in fishes. Acta Scientiarum Naturalium Academiae Scientiarum Bohemicae Brno. 1997;31(5):p. 70.
Šterzl J. The Immune System and Its Physiological Functions. Prague, Czech Republic: Czech Society for Immunology; 1993.
Bush AO, Lafferty KD, Lotz JM, Shostak AW. Parasitology meets ecology on its own terms: margolis et al. revisited. Journal of Parasitology. 1997;83(4):575–583. PubMed
Wedemeyer GA, Barton BA, McLeay DJ. Stress and acclimation. In: Schreck CB, Moyle PB, editors. Methods for Fish Biology. Bethesda, Md, USA: American Fisheries Society; 1990. pp. 451–489.
Pulsford AL, Lemaire-Gony S, Tomlinson M, Collingwood N, Glynn PJ. Effects of acute stress on the immune system of the dab, Limanda limanda. Comparative Biochemistry and Physiology C. 1994;109(2):129–139.
Larsson A, Lehtinen KJ, Haux C. Biochemical and hematological effects of a titanium dioxide industrial effluent on fish. Bulletin of Environmental Contamination and Toxicology. 1980;25(3):427–435. PubMed
Munkittrick KR, Leatherland JF. Haematocrit values in feral goldfish, Carassius auratus L., as indicators of the health of the population. Journal of Fish Biology. 1982;23:153–161.
Wester PW, Vethaak AD, van Muiswinkel WB. Fish as biomarkers in immunotoxicology. Toxicology. 1994;86(3):213–232. PubMed
Ellis AE. The function of teleost fish lymphocytes in relation to inflammation. International Journal of Tissue Reactions. 1986;8(4):263–270. PubMed
Richards DT, Hoole D, Lewis JW, Evans E, Arme C. Changes in the cellular composition of the spleen and pronephros of carp Cyprinus carpio infected with the blood fluke Sanguinicola inermis (Trematoda: Sanguinicolidae) Diseases of Aquatic Organisms. 1994;19(3):173–179.
Secombes CJ, Chappell LH. Fish immune responses to experimental and natural infection with helminth parasites. Annual Review of Fish Diseases. 1996;6:167–177.
Buchmann K. Immune mechanisms in fish skin against monogeneans—a model. Folia Parasitologica. 1999;46(1):1–9. PubMed
Jones SRM. The occurrence and mechanisms of innate immunity against parasites in fish. Developmental and Comparative Immunology. 2001;25(8-9):841–852. PubMed
Buchmann K, Lindenstrøm T. Interactions between monogenean parasites and their fish hosts. International Journal for Parasitology. 2002;32(3):309–319. PubMed
Hatice TK, Erdogan Z, Coz-Rakovac R. The occurrence of Ligula intestinalis (L.) observed in chub (Leuciscus cephalus L.) from Caparlipatlak Dam lake, Ivrindi-Balikesir, Turkey. Periodicum Biologorum. 2006;108(2):183–187.
Muñoz G, Grutter AS, Cribb TH. Structure of the parasite communities of a coral reef fish assemblage (Labridae): testing ecological and phylogenetic host factors. Journal of Parasitology. 2007;93(1):17–30. PubMed
Vladimirov VL. The immunity of fishes in the case of dactylogyrosis. Parasitologiya. 1971;5:51–58. (Rus).
Buchmann K. A note on the humoral immune response of infected Anguilla anguilla against the gill monogenean Pseudodactylogyrus bini. Fish & Shellfish Immunology. 1993;3(5):397–399.
Buchmann K. Binding and lethal effect of complement from Oncorhynchus mykiss on Gyrodactylus derjavini (Platyhelminthes: Monogenea) Diseases of Aquatic Organisms. 1998;32(3):195–200. PubMed
Harris PD, Soleng A, Bakke TA. Killing of Gyrodactylus salaris (Platyhelminthes, Monogenea) mediated by host complement. Parasitology. 1998;117(2):137–143. PubMed
Rubio-Godoy M, Porter R, Tinsley RC. Evidence of complement-mediated killing of Discocotyle sagittata (Platyhelminthes, Monogenea) oncomiracidia. Fish & Shellfish Immunology. 2004;17(2):95–103. PubMed
Buchmann K, Uldal A. Gyrodactylus derjavini infections in four salmonids: comparative host susceptibility and site selection of parasites. Disease of Aquatic Organisms. 1997;28(3):201–209.
Buchmann K, Bresciani J. Microenvironment of Gyrodactylus derjavini on rainbow trout Oncorhynchus mykiss: association between mucous cell density in skin and site selection. Parasitology Research. 1997;84(1):17–24. PubMed
Sitja-Bobadilla A. Living off a fish: a trade-off between parasites and the immune system. Fish & Shellfish Immunology. 2008;25(4):358–372. PubMed
Bly JE, Clem LW. Temperature and teleost immune functions. Fish & Shellfish Immunology. 1992;2(3):159–171.
Collazos ME, Ortega E, Barriga C. Effect of temperature on the immune system of a cyprinid fish (Tinca tinca, L). Blood phagocyte function at low temperature. Fish & Shellfish Immunology. 1994;4(3):231–238.
Hutchinson TH, Manning MJ. Seasonal trends in serum lysozyme activity and total protein concentration in dab (Limanda limanda L.) sampled from Lyme Bay, U.K. Fish & Shellfish Immunology. 1996;6(7):473–482.
Scapigliati G, Scalia D, Marras A, Meloni S, Mazzini M. Immunoglobulin levels in the teleost sea bass Dicentrarchus labrax (L.) in relation to age, season, and water oxygenation. Aquaculture. 1999;174(3-4):207–212.
Langston AL, Hoare R, Stefansson M, Fitzgerald R, Wergeland H, Mulcahy M. The effect of temperature on non-specific defence parameters of three strains of juvenile Atlantic halibut (Hippoglossus hippoglossus L.) Fish & Shellfish Immunology. 2002;12(1):61–76. PubMed
Hernández A, Tort L. Annual variation of complement, lysozyme and haemagglutinin levels in serum of the gilthead sea bream Sparus aurata. Fish & Shellfish Immunology. 2003;15(5):479–481. PubMed
Bowden TJ, Butler R, Bricknell IR. Seasonal variation of serum lysozyme levels in Atlantic halibut (Hippoglossus hippoglossus L.) Fish & Shellfish Immunology. 2004;17(2):129–135. PubMed
Poisot T, Šimková A, Hyršl P, Morand S. Interactions between immunocompetence, somatic condition and parasitism in the chub Leuciscus cephalus in early spring. Journal of Fish Biology. 2009;75(7):1667–1682. PubMed
Lamková K, Šimková A, Palíková M, Jurajda P, Lojek A. Seasonal changes of immunocompetence and parasitism in chub (Leuciscus cephalus), a freshwater cyprinid fish. Parasitology Research. 2007;101(3):775–789. PubMed
Hanzelová V, Gerdeaux D. Seasonal occurrence of the tapeworm Proteocephalus longicollis and its transmission from copepod intermediate host to fish. Parasitology Research. 2003;91(2):130–136. PubMed
Scholz T, Moravec F. Seasonal dynamics of Proteocephalus torulosus (Cestoda: Proteocephalidae) in barbel (Barbus barbus) from the Jihlava River, Czech Republic. Folia Parasitologica. 1994;41(4):253–257.
Alvarez-Pellitero P. Fish immunity and parasite infections: from innate immunity to immunoprophylactic prospects. Veterinary Immunology and Immunopathology. 2008;126(3-4):171–198. PubMed
Fletcher TC, White A, Baldo BA. Isolation of a phosphorylcholine-containing component from the turbot tapeworm, Bothriocephalus scorpii (Müller), and its reaction with C-reactive protein. Parasite Immunology. 1980;2(4):237–248. PubMed
Evans NA. The occurrence of Sphaerostoma bramae (Digenea: Allocreadiidae) in the roach from the Worcester-Birmingham canal. Journal of Helminthology. 1977;51(3):189–196. PubMed
Kalbe M, Kurtz J. Local differences in immunocompetence reflect resistance of sticklebacks against the eye fluke Diplostomum pseudospathaceum. Parasitology. 2006;132(1):105–116. PubMed
Murad A, Mustafa S. Blood parameters of catfish, Heteropneustes fossilis (Bloch), parasitized by metacercariae of Diplostomum sp. Journal of Fish Diseases. 1988;11(4):365–368.
Taylor M, Hoole D. Ligula intestinalis (L.) (Cestoda: Pseudophyllidea): plerocercoid-induced changes in the spleen and pronephros of roach, Rutilus rutilus (L.), and gudgeon, Gobio gobio (L.) Journal of Fish Biology. 1989;34(4):583–596.
Morand S, Poulin R. Nematode parasite species richness and the evolution of spleen size in birds. Canadian Journal of Zoology. 2000;78(8):1356–1360.
Šimková A, Lafond T, Ondračková M, Jurajda P, Ottová E, Morand S. Parasitism, life history traits and immune defence in cyprinid fish from Central Europe. BMC Evolutionary Biology. 2008;8(29):1–11. PubMed PMC
Wedekind C, Folstad I. Adaptive or nonadaptive immunosuppression by sex hormones? The American Naturalist. 1994;143(5):936–938.
Viney ME, Riley EM, Buchanan KL. Optimal immune responses: immunocompetence revisited. Trends in Ecology & Evolution. 2005;20(12):665–669. PubMed