• This record comes from PubMed

A review on the effects of supercritical carbon dioxide on enzyme activity

. 2010 Jan 19 ; 11 (1) : 233-253. [epub] 20100119

Language English Country Switzerland Media electronic

Document type Journal Article, Research Support, Non-U.S. Gov't, Review

Different types of enzymes such as lipases, several phosphatases, dehydrogenases, oxidases, amylases and others are well suited for the reactions in SC-CO(2). The stability and the activity of enzymes exposed to carbon dioxide under high pressure depend on enzyme species, water content in the solution and on the pressure and temperature of the reaction system. The three-dimensional structure of enzymes may be significantly altered under extreme conditions, causing their denaturation and consequent loss of activity. If the conditions are less adverse, the protein structure may be largely retained. Minor structural changes may induce an alternative active protein state with altered enzyme activity, specificity and stability.

See more in PubMed

Verma ML, Azmi W, Kanwar SS. Microbial lipases: At the interface of aqueous and nonaqueous media–A review. Acta Microbiol. Immunol. Hung. 2008;55:265–294. PubMed

Xia XL, Wang YH, Yang B, Wang XN. Wheat germ lipase catalyzed kinetic resolution of secondary alcohols in non-aqueous media. Biotechnol. Lett. 2009;31:83–87. PubMed

Yadav GD, Sivakumar P. Enzyme-catalyzed optical resolution of mandelic acid via RS(−/+)-methyl mandelate in non-aqueous media Source. Biochem. Eng. J. 2004;19:101–107.

Randolph TW, Blanch HW, Prausnitz JM, Wilke CR. Enzymatic catalysis in a supercritical fluid. Biotechnol. Lett. 1985;7:325–328.

Randolph TW, Clark DS, Blanch HW, Prausnitz JM. Enzymatic oxidation of cholesterol aggregates in supercritical carbon dioxide. Science. 1988;239:387–390. PubMed

Steytler DC, Moulson PS, Reynolds J. Biotransformations in near-critical carbon dioxide. Enzyme Microb. Technol. 1991;13:221–226.

Srivastava S, Madras G, Modak J. Esterification of myristic acid in supercritical carbon dioxide. J. Supercrit. Fluids. 2003;27:55–64.

Matsuda T, Watanabe K, Harada T, Nakamura K. Enzymatic reactions in supercritical CO2: carboxylation, asymmetric reduction and esterification. Catal. Today. 2004;96:103–111.

Damar S, Balaban MO. Review of dense phase CO2 technology: microbial and enzyme inactivation, and effects on food quality. J. Food Sci. 2006;71:R1–R11.

Garcia-Gonzalez L, Geeraerd AH, Spilimbergo S, Elst K, Van Ginneken L, Debevere J, van Impe JF, Devlieghere F. High pressure carbon dioxide inactivation of microorganisms in foods: the past, the present and the future. Int. J. Food Microbiol. 2007;117:1–28. PubMed

Kincal D, Hill WS, Balaban MO, Portier KM, Wei CI, Marshall MR. A continuous high pressure carbon dioxide system for microbial reduction in orange juice. J. Food Sci. 2005;70:M249–M254.

Zhang J, Davis TA, Matthews MA, Drews MJ, LaBerge M, An YH. Sterilization using high-pressure carbon dioxide. J. Supercrit. Fluids. 2006;38:354–372.

Hong SI, Pyun YR. Inactivation of Lactobacillus sp. from Kimchi by high pressure carbon dioxide. Lebensmittel. Wissen. Technol. 1997;30:681–685.

Isenschmid A, Marison IW, von Stockar U. The influence of pressure and temperature of compressed CO2 on the survival of yeast cells. J. Biotechnol. 1995;39:229–237. PubMed

Hong SI, Pyun YR. Inactivation kinetics of Lactobacillus plantarum by high pressure carbon dioxide. J. Food Sci. 1999;64:728–733.

Jung WY, Choi YM, Rhee MS. Potential use of supercritical carbon dioxide to decontaminate Escherichia coli 0157:H7, Listeria monocytogenes, and Salmonella typhimurium in alfalfa sprouted seeds. Int. J. Food Microbiol. 2009;136:66–70. PubMed

Kamihira M, Taniguchi M, Kobayashi T. Sterilization of microorganisms with supercritical carbon-dioxide. Agric. Biol. Chem. 1987;51:407–412.

Paulaitis ME, Krukonis VJ, Kurnik RT, Reid RC. Supercritical fluid extraction. Rev. Chem. Eng. 1983;1:179–250.

Erkmen O. Inactivation of Salmonella typhimurium by high pressure carbon dioxide. Food Microbiol. 2000;17:225–232.

Erkmen O, Karaman H. Kinetic studies on the high pressure carbon dioxide inactivation of Salmonella typhimurium. J. Food Eng. 2001;50:25–28.

Kim SR, Rhee MS, Kim BC, Lee H, Kim KH. Modeling of the inactivation of Salmonella typhimurium by supercritical carbon dioxide in physiological saline and phosphatebuffered saline. J. Microbiol. Methods. 2007;70:132–141. PubMed

Spilimbergo S, Elvassore N, Bertucco A. Microbial activation by high pressure. J. Supercrit. Fluid. 2002;22:55–63.

Choi HJ, Kim KH. Flow cytometric analysis of Salmonella enterica serotype Typhimurium inactivated with supercritical carbon dioxide. J. Microbiol. Methods. 2009;78:155–160. PubMed

Balaban MO, Arreora AG, Marshall M, Peplow A, Wei CI, Cornell J. Inactivation of pectinesterase in orange juice by supercritical carbon dioxide. J. Food Sci. 1991;56:743–746.

Chen JS, Balaban MO, Wei CI, Marshall MR, Hsu WY. Inactivation of polyphenol oxidase by high pressure carbon dioxide. J. Agric. Food Chem. 1992;40:2345–2349.

Erkmen O. Effect of carbon dioxide pressure on Listeria monocytogenes in physiological saline and foods. Food Microbiol. 2000;17:589–596.

Erkmen O. Antimicrobial effect of pressurized carbon dioxide on Enterococcus faecalis in physiological saline and foods. J. Sci. Food Agric. 2000;80:465–470.

Erkmen O. Antimicrobial effect of pressurized carbon dioxide on Brochothrix thermosphacta in broth and foods. J. Sci. Food Agric. 2000;80:1365–1370.

Erkmen O. Effect of high-pressure carbon dioxide on Escherichia coli in nutrient broth and milk. Int. J. Food Microbiol. 2001;65:131–135. PubMed

Dillow AK, Dehghani F, Hrkach JS, Foster NR, Langer R. Bacterial inactivation by using near- and supercritical carbon dioxide. Proc. Natl. Acad. Sci. USA. 1999;96:10344–10348. PubMed PMC

Ishikawa H, Shimoda M, Kawano T, Osajima Y. Inactivation of enzymes in an aqueous solution by micro-bubbles of supercritical carbon dioxide. Biosci. Biotech. Biochem. 1995;59:628–631.

Ishikawa H, Shimoda M, Tamaya K, Yonekura A, Kawano T, Osajima Y. Inactivation of Bacillus spores by the supercritical carbon dioxide micro-bubble method. Biosci. Biotech. Biochem. 1997;61:1022–1023. PubMed

Ishikawa H, Shimoda M, Yonekura A, Osajima Y. Inactivation of pectinesterase in Valencia orange juice by micro-bubble supercritical carbon dioxide method. Nipp. Shok. Kag. Kog. Kai. 1996;43:999–1003.

Yoshimura T, Furutera M, Shimoda M, Ishikawa H, Miyake M, Matsumoto K, Osajima Y, Hayakawa I. Inactivation efficiency of enzymes in buffered system by continuous method with micro-bubbles of supercritical carbon dioxide. J. Food Sci. 2002;67:3227–3231.

Yoshimura T, Shimoda M, Ishikawa H, Miyake M, Matsumoto K, Osajima Y, Hayakawa I. Effect of CO2 flow rate on enzyme inactivation by continuous method with microbubbles of supercritical carbon dioxide. J. Fac. Agric. Kyushu Univ. 2002;46:345–352.

Yoshimura T, Shimoda M, Ishikawa H, Miyake M, Hayakawa I, Matsumoto K, Osajima Y. Inactivation kinetics of enzymes by using continuous treatment with micro-bubbles of supercritical carbon dioxide. J. Food Sci. 2001;66:694–697.

Endo Y, Murakami Y, Fujimoto K, Ajiri M, Arai K. Inactivation of oxidoreductase containing metals by supercritical carbon-dioxide. J. Jpn. Soc. Food Sci. Technol. 1995;42:932–936.

Giessauf A, Magor W, Steinberger DJ, Marr R. A study of hydrolases stability in supercritical carbon dioxide (SC-CO2) Enzyme Microb. Technol. 1999;24:577–583.

Kamihira M, Taniguchi M, Kobayashi T. Sterilization of microorganisms with supercritical carbon-dioxide. Agric. Biol. Chem. 1987;51:407–412.

Habulin M, Knez Ž. Activity and stability of lipases from different sources in supercritical carbon dioxide and near-critical propane. J. Chem. Technol. Biotechnol. 2001;76:1260–1266.

Zagrobelny J, Bright FV. In situ studies of protein conformation in supercritical fluids: trypsin in carbon dioxide. Biotechnol. Prog. 1992;8:421–423. PubMed

Knez Ž;, Habulin M, Primožič M. Hydrolases in supercritical CO2 and their use in a highpressure membrane reactor. Bioproc. Biosyst. Eng. 2003;25:279–284. PubMed

Giessauf A, Gamse T. A simple process for increasing the specific activity of porcine pancreatic lipase by supercritical carbon dioxide treatment. J. Mol. Catal. B: Enzym. 2000;9:57–64.

Bauer Ch, Steinberger DJ, Schlauer G, Gamse T, Marr R. Activation and denaturation of hydrolases in dry and humid supercritical carbon dioxide (SC-CO2) J. Supercrit. Fluids. 2000;19:79–86.

Bauer Ch, Gamse T, Marr R. Quality improvement of crude porcine pancreatic lipase preparations by treatment with humid supercritical carbon dioxide. Biochem. Eng. J. 2001;9:119–123.

Yan Y, Noritomi H, Nagahama K. A rise in the hydrolysis activity of Candida rugosa lipase caused by pressurized treatment with supercritical carbon dioxide. Kobunshi Ronbunshu. 2001;58:674–678.

Hlavsová K, Wimmer Z, Xanthakis E, Bernášek P, Sovová H, Zarevúcka M. Lipase activity enhancement by SC-CO2 treatment. Z. Naturforsch. B. 2008;63:779–784.

Wang SS-S, Chao H-S, Liu H-L, Liu H-S. Stability of hen egg white lysozyme during denaturation is enhanced by pretreatment with supercritical carbon dioxide. J. Biosci. Bioeng. 2009;107:355–359. PubMed

Findrik Z, Vasic-Racki D, Primožič M, Habulin M, Knez Ž. Enzymatic activity of L-amino acid oxidase from snake venom Crotalus adamanteus in supercritical CO2. Biocatal. Biotrans. 2005;23:315–321.

Habulin M, Šabeder S, Paljevac M, Primožič M, Knez Ž. Lipase-catalyzed esterification of citronellol with lauric acid in supercritical carbon dioxide/co-solvent media. J. Supercrit. Fluids. 2003;43:199–203.

Lozano P, De Diego T, Carrie D, Vaultier M, Iborra JL. Over-stabilization of Candida antarctica lipase B by ionic liquids in ester synthesis. Biotechnol. Lett. 2001;23:1529–1533.

Persson M, Bornscheuer UT. Increased stability of an esterase from Bacillus stearothermophilus in ionic liquids as compared to organic solvents. J. Mol. Catal. B: Enzym. 2003;22:21–27.

Gamse T, Marr R. Investigation of influence parameters on enzyme stability during treatment with supercritical carbon dioxide (SC-CO2). In Proc.of 5th Int. Symp. Supercrit, Fluids; Atlanta, CD, USA. 8–12 April 2000.

Hampson JW, Foglia TA. Effect of moisture content on immobilized lipase-catalyzed triacylglycerol hydrolysis under supercritical carbon dioxide flow in a tubular fixed-bed reactor. J. Am. Oil Chem. Soc. 1999;76:777–781.

Rezaei K, Temelli F. Lipase-catalyzed hydrolysis of canola oil in supercritical carbon dioxide. J. Am. Oil Chem. Soc. 2000;77:903–909.

Rezaei K, Temelli F. On-line extraction-reaction of canola oil using immobilized lipase in supercritical CO2. J. Supercrit. Fluids. 2001;19:263–274.

Sovová H, Zarevúcka M. Lipase-catalyzed hydrolysis of blackcurrant oil in supercritical carbon dioxide. Chem. Eng. Sci. 2003;58:2339–2350.

Zarevúcka M, Vacek M, Wimmer Z, Stránský K, Koutek B, Demnerová K. Enzymic transformations of blackcurrant oil: enrichment with γ-linolenic acid and α-linolenic acid. Chem. Listy. 2003;97:206–213.

Sovová H, Zarevúcka M. Lipase-catalyzed hydrolysis of blackcurrant oil in supercritical carbon dioxide. Chem. Eng. Sci. 2003;58:2339–2350.

Bártlová M, Bernášek P, Sýkora J, Sovová H. HPLC in reversed phase mode: tool for investigation of kinetics of blackcurrant seed oil lipolysis in supercritical carbon dioxide. J. Chromatogr. B. 2006;839:80–84. PubMed

Sýkora J, Bernášek P, Zarevúcka M, Kurfürst M, Sovová H, Schraml J. Highperformance liquid chromatography with nuclear magnetic resonance detection—A method for quantification of α- and γ-linolenic acids in their mixtures with free fatty acids. J. Chromatogr. A. 2007;1139:152–155. PubMed

Primožič M, Habulin M, Knez Ž. Modeling of kinetics for the enzymatic hydrolysis of sunflower oil in a high-pressure reactors. J. Am. Oil Chem. Soc. 2005;82:543–547.

Primožič M, Habulin M, Knez Ž. Thermodynamic properties of the enzymatic hydrolysis of sunflower oil in high-pressure reactors. J. Am. Oil Chem. Soc. 2003;80:785–788.

Primožič M, Habulin M, Knez Ž. Parameter optimization for enzymic hydrolysis of sunflower oil in high-pressure reactors. J. Am. Oil Chem. Soc. 2003;80:643–646.

Lee HS, Lee WG, Park SW, Lee H, Chang HN. Starch hydrolysis using enzyme in supercritical carbon-dioxide. Biotechnol. Tech. 1993;4:267–270.

Paljevac M, Primožič M, Habulin M, Novak Z, Knez Ž. Hydrolysis of carboxymethyl cellulose catalyzed by cellulase immobilized on silica gels at low and high pressures. J. Supercrit. Fluids. 2007;43:74–80.

Khaled N, Montet D, Pina M, Graille J. Fructose oleate synthesis in a fixed catalyst bed reactor. Biotechnol. Lett. 1991;13:167–172.

Xu JH, Kato Y, Asano Y. Efficient preparation of (R)-α-monobenzoyl glycerol by lipase catalyzed asymmetric esterification: optimization and operation in a packed bed reactor. Biotechnol. Bioeng. 2001;73:493–499. PubMed

Petzelbauer I, Kuhn B, Splechtna B, Kulbe KD, Nidetzky B. Development of an ultrahightemperature process for the enzymatic hydrolysis of lactose IV. Immobilization of two thermostable β-glycosidases and optimization of packed bed reactor for lactose conversion. Biotechnol. Bioeng. 2002;77:619–631. PubMed

Xi WW, Xu JH. Preparation of enantiopure (S)-ketoprofen by immobilized Candida rugosa lipase in packed bed reactor. Proc. Biochem. 2005;40:2161–2166.

Roca E, Meinander N, Hahn-Hagerdal B. Xylitol production by immobilized recombinant Saccharomyces cerevisiae in a continuous packed-bed bioreactor. Biotechnol. Bioeng. 1996;51:317–326. PubMed

Mu H, Xu X, Hoy CE. Production of specific-structured triacyglycerols by lipase-catalyzed interesterification in a laboratory scale continuous reactor. J. Am. Oil Chem. Soc. 1998;75:1187–1193.

Shimada Y, Suenaga M, Sugihara A, Nakai S, Tominaga Y. Continuous production of structured lipid containing γ-linolenic and caprylic acids by immobilized Rhizopus delemar lipase. J. Am. Oil Chem. Soc. 1999;76:189–193.

Xu X, Balchen S, Hoy CE, Adler-Nissen J. Production of specific-structured lipids by enzymatic interesterification in a pilot continuous enzyme bed reactor. J. Am. Oil Chem. Soc. 1998;75:1573–1579.

Kaewthong W, Sirisansaneeyakul S, Prasertsan P, H-Kittikun A. Continuous production of monoacylglycerols by glycerolysis of palm olein with immobilized lipase. Proc. Biochem. 2005;40:1525–1530.

Jeong S, Hwang BY, Kim J, Kim BG. Lipase-catalyzed reaction in the packed-bed reactor with continuous column to overcome a product inhibition. J. Mol. Catal. B: Enzym. 2000;10:597–604.

Liu KM, Chang HM. Biocatalytic synthesis of palmitoyl vanillylamide in supercritical carbon dioxide through amidation of vanillylamine hydrochloride and palmitic anhydride by lipase. Food Chem. 2007;102:1020–1026.

Matsuda T, Ohashia Y, Haradaa T, Yanagihara R, Nagasawa T, Nakamura K. Conversion of pyrrole to pyrrole-2-carboxylate by cells of Bacillus megaterium in supercritical CO2. Chem. Commun. 2001;21:2194–2195. PubMed

Wieser M, Yoshida T, Nagasawa T. Microbial synthesis of pyrrole-2-carboxylate by Bacillus megaterium PYR2910. Tetrahedron Lett. 1998;39:4309–4310.

Wieser M, Fujii N, Yoshida T, Nagasawa T. Carbon dioxide fixation by reversible pyrrole-2-carboxylate decarboxylase from Bacillus megaterium PYR2910. Eur. J. Biochem. 1998;257:495–499. PubMed

Yoshida Y, Nagasawa T. Carbon dioxide fixation by reversible pyrrole-2-carboxylate decarboxylase from Bacillus megaterium PYR2910. J. Biosci. Bioeng. 2000;89:111–118.

Wieser M, Yoshida T, Nagasawa T. Carbon dioxide fixation by reversible pyrrole-2-carboxylate decarboxylase and its application. J. Mol. Catal. B: Enzym. 2001;11:179–184. PubMed

Dijkstra ZJ, Merchant R, Keurentjes JTF. Stability and activity of enzyme aggregates of Calb in supercritical CO2. J. Supercrit. Fluids. 2007;41:102–108.

Romero MD, Calvo L, Alba C, Habulin M, Primožič M, Knez Ž. Enzymatic synthesis of isoamyl acetate with immobilized Candida antarctica lipase in supercritical carbon dioxide. J. Supercrit. Fluids. 2005;33:77–84.

Laudani CG, Habulin M, Knez Z, Della Porta G, Reverchon E. Immobilized lipasemediated long-chain fatty acid esterification in dense carbon dioxide: bench-scale packed-bed reactor study. J. Supercrit. Fluids. 2007;41:74–81.

Vidinha P, Augusto V, Almeida M, Fonseca I, Fidalgo A, Ilharco L, Cabral JMS, Barreiros S. Sol-gel encapsulation: An efficient and versatile immobilization technique for cutinase in non-aqueous media. J. Biotechnol. 2006;121:23–33. PubMed

Garcia S, Vidinha P, Arvana H, Gomes da Silva MDR, Ferreira MO, Cabral JMS, Macedo EA, Harper N, Barreiros S. Cutinase activity in supercritical and organic media: water activity, solvation and acid-base effects. J. Supercrit. Fluids. 2005;35:62–69.

Larsen BL, Rasmussen P, Fredenslund A. A modified UNIFAC group-contribution model for prediction of phase equilibria and heat of mixing. Ind. Eng. Chem. Res. 1987;26:2274–2286.

Dahl S, Fredenslund A, Rasmussen P. The MHV2 model: A UNIFAC-based equation of state model for prediction of gas solubility and vapor liquid equilibria at low and high pressures. Ind. Eng. Chem. Res. 1991;30:1936–1945.

Dahl S, Michelsen ML. High pressure vapor-liquid equilibrium with a UNIFAC based equation of state. Fluid Phase Equilib. 1990;36:1829–1836.

Garcia S, Lourenco NMT, Lousa D, Sequeira AF, Mimoso P, Cabral JMS, Afonso CAM, Barreiros S. A comparative study of biocatalysis in non-conventional solvents: Ionic liquids, supercritical fluids and organic media. Green Chem. 2004;6:466–470.

Lozano P, Víllora G, Gómez D, Gayo AB, Sánchez-Conesa JA, Rubio M, Iborra JL. Membrane reactor with immobilized Candida anratctica lipase B for ester synthesis in Supercritical dioxide. J. Supercrit. Fluids. 2004;29:121–128.

Shin MH, Cheong NY, Lee JH, Kim KH. Transglucosylation of caffeic acid by a recombinant sucrose phosphorylase in aqueous buffer and aqueous-supercritical CO2 media. Food Chem. 2009;115:1028–1033.

Peres C, Da Silva DRG, Barreiros S. Water activity effects on geranyl acetate synthesis catalyzed by Novozym in supercritical ethane and in supercritical carbon dioxide. J. Agric. Food Chem. 2003;51:1884–1888. PubMed

Olsen T, Kerton F, Marriott R, Grogan G. Biocatalytic esterification of lavandulol in supercritical carbon dioxide using acetic acid as the acyl donor. Enzyme Microb. Technol. 2006;39:621–625.

Michor H, Marr R, Gamse T, Shilling T, Klingsbichel E, Schwab H. Enzymatic catalysis in supercritical carbon dioxide: comparison of different lipases and a novel esterase. Biotechnol. Lett. 1996;18:79–84.

Almeida MC, Ruivo R, Maia C, Freire L, de Sampaio TC, Barreiros S. Novozym 435 activity in compressed gases. Water activity and temperature effects. Enzyme Microb. Technol. 1998;22:494–499.

Overmeyer A, Schrader-Lippelt S, Kashe V, Brunner G. Lipase-catalyzed kinetic resolution of racemates at temperatures from 40 degrees C to 160 degrees C in supercritical CO2. Biotechnol. Lett. 1999;21:65–69.

Peres C, Marco DR, Da Silva G, Barreiros S. Water activity effects on geranyl acetate synthesis catalyzed by Novozym in supercritical ethane and in supercritical carbon dioxide. J. Agric. Food Chem. 2003;51:1884–1888. PubMed

Martins JF, Carvalho IB, Sampaio TC, Barreiros S. Lipase-catalyzed enantioselective easterification of glycidol in supercritical carbon dioxide. Enzyme Microb. Technol. 1994;16:785–790.

Kumar R, Madras G, Modak J. Enzymatic synthesis of ethyl palmitate in supercritical carbon dioxide. Ind. Eng. Chem. Res. 2004;43:1568–1573.

Matsuda T, Harada T, Nakamura K. Alcohol dehydrogenase is active in supercritical carbon dioxide. Chem Commun. 2000:1367–1368.

Matsuda T, Watanabe K, Kamitanaka T, Harada T, Nakamura K. Biocatalytic reduction of ketones by a semi-continuous flow process using supercritical carbon dioxide. Chem Commun. 2003:1198–1199. PubMed

Panza JL, Russell AJ, Beckman EJ. Synthesis of fluorinated NAD as a soluble coenzyme for enzymatic chemistry in fluorous solvents and carbon dioxide. Tetrahedron. 2002;58:4091–4104.

Oliveira JV, Oliveira D. Kinetics of the enzymatic alcoholysis of palm kernel oil in supercritical CO2. Ind. Eng. Chem. Res. 2000;39:4450–4454.

Kamat SV, Beckman EJ, Russell AJ. Enzyme-activity in supercritical fluids. Crit. Rev. Biotechnol. 1995;15:41–71.

Habulin M, Knez Ž. High-pressure enzymatic hydrolysis of oil. Eur. J. Lipid Sci. Technol. 2002;104:381–386.

Schmid RD, Verger R. Lipases: Interfacial enzymes with attractive applications. Angew. Chem. Int. Ed. Engl. 1998;37:1608–1633. PubMed

Baumann H, Bühler M, Fochem H, Hirsinger F, Zoebelein H, Falbe J. Natural fats and oils—Renewable raw materials for the chemical industry. Angew. Chem. Int. Ed. Engl. 1988;27:41–62.

Moquin PHL, Temelli F. Production of monoolein from oleic acid and glycerol in supercritical carbon dioxide media: A kinetic approach. J. Supercrit. Fluids. 2008;44:40–47.

Find record

Citation metrics

Logged in users only

Archiving options

Loading data ...