Bioinformatic and biochemical studies point to AAGR-1 as the ortholog of human acid alpha-glucosidase in Caenorhabditis elegans
Language English Country Netherlands Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
- MeSH
- Acarbose pharmacology MeSH
- alpha-Glucosidases chemistry genetics MeSH
- Phylogeny MeSH
- Glycoside Hydrolase Inhibitors MeSH
- Catalytic Domain MeSH
- Humans MeSH
- Caenorhabditis elegans Proteins antagonists & inhibitors chemistry genetics MeSH
- Sequence Alignment MeSH
- Computational Biology methods MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Aagr-1 protein, C elegans MeSH Browser
- Acarbose MeSH
- alpha-Glucosidases MeSH
- GAA protein, human MeSH Browser
- Glycoside Hydrolase Inhibitors MeSH
- Caenorhabditis elegans Proteins MeSH
Human acid alpha-glucosidase (GAA, EC 3.2.1.20) is a lysosomal enzyme that belongs to the glycoside hydrolase family 31 (GH31) and catalyses the hydrolysis of alpha-1,4- and alpha-1,6-glucosidic linkages at acid pH. Hereditary deficiency of GAA results in lysosomal glycogen storage disease type II (GSDII, Pompe disease). The aim of this study was to assess GH31 proteins in Caenorhabditis elegans (C. elegans) to identify the ortholog of human GAA. Bioinformatic searches for GAA ortholog in C. elegans genome revealed four acid alpha-glucosidase-related (aagr-1-4) genes. Multiple sequence alignment of AAGRs with other GH31 proteins demonstrated their evolutionary conservation. Phylogenetic analyses suggested clustering of AAGR-1 and -2 with acid-active and AAGR-3 and -4 with neutral-active GH31 enzymes. In order to prove the AAGRs' predicted alpha-glucosidase activity, we performed RNA interference of all four aagr genes. The impact on the alpha-glucosidase activity was evaluated at pH 4.0 (acid) and pH 6.5 (neutral), with or without the inhibitor acarbose. AAGR-1 and -2 expressed acidic alpha-glucosidase activity; on the contrary, AAGR-3 not -4 represented the predominant neutral alpha-glucosidase activity in C. elegans. Similar results were obtained in each of aagr-1 and -4 deletion mutants. Moreover, based on our structural models of AAGRs and these biochemical experiments, we hypothesize that the enzymatic sensitivity of AAGR-2 and human maltase-glucoamylase to the inhibitor acarbose is associated with a tyrosine residue in the GH31 active site, whereas acarbose resistance of AAGR-1 and human GAA is associated with the corresponding tryptophane in the active site. Acid-active AAGR-1 may thus represent the ortholog of human GAA in C. elegans.
See more in PubMed
J Mol Biol. 2008 Jan 18;375(3):782-92 PubMed
Mech Ageing Dev. 2003 Jul;124(7):779-800 PubMed
Mol Genet Metab. 2008 Mar;93(3):275-81 PubMed
Mol Genet Metab. 2006 May;88(1):22-8 PubMed
Genome Biol. 2001;2(1):RESEARCH0002 PubMed
J Inherit Metab Dis. 2009 Jun;32(3):416-23 PubMed
Hum Mutat. 2008 Jun;29(6):E13-26 PubMed
Biol Chem. 2006 Sep;387(9):1247-54 PubMed
Biochem J. 1991 Dec 1;280 ( Pt 2):309-16 PubMed
Proc Natl Acad Sci U S A. 2003 Feb 4;100(3):1432-7 PubMed
FEBS Lett. 2007 Apr 3;581(7):1261-8 PubMed
Clin Genet. 1981 Jan;19(1):55-63 PubMed
Biosci Biotechnol Biochem. 1997 Mar;61(3):475-9 PubMed
Nat Protoc. 2007;2(4):953-71 PubMed
J Mol Biol. 1993 Dec 5;234(3):779-815 PubMed
Dev Neurosci. 1983-1984;6(1):58-71 PubMed
J Biol Chem. 2005 Jan 21;280(3):2105-15 PubMed
Clin Chem. 1997 Aug;43(8 Pt 1):1325-35 PubMed
Biochem J. 2001 Oct 15;359(Pt 2):381-6 PubMed
Nucleic Acids Res. 2007 Jul;35(Web Server issue):W375-83 PubMed
Genetics. 1974 May;77(1):71-94 PubMed
Nature. 1998 Feb 19;391(6669):806-11 PubMed
J Biochem. 1990 Feb;107(2):197-201 PubMed
Science. 1998 Dec 11;282(5396):2012-8 PubMed
Proc Natl Acad Sci U S A. 2002 Oct 29;99(22):14218-23 PubMed
Evolution. 1985 Jul;39(4):783-791 PubMed
Eur J Biochem. 2001 Apr;268(8):2270-80 PubMed
J Org Chem. 2007 Jan 5;72(1):180-6 PubMed
J Biol Chem. 1991 Jul 25;266(21):13507-12 PubMed
Biochim Biophys Acta. 2008 Jul-Aug;1782(7-8):433-46 PubMed
J Mol Biol. 2006 May 12;358(4):1106-24 PubMed
Mol Biol (Mosk). 2007 Nov-Dec;41(6):1056-68 PubMed
Nucleic Acids Res. 1994 Nov 11;22(22):4673-80 PubMed
Glycobiology. 2008 Aug;18(8):570-86 PubMed
Proc Natl Acad Sci U S A. 2005 Aug 9;102(32):11266-71 PubMed
BMC Cell Biol. 2005 Jan 27;6(1):5 PubMed
Anal Biochem. 1987 Apr;162(1):156-9 PubMed
Trends Genet. 2004 Nov;20(11):521-4 PubMed
Nat Rev Genet. 2003 Feb;4(2):112-20 PubMed