Characterization of gana-1, a Caenorhabditis elegans gene encoding a single ortholog of vertebrate alpha-galactosidase and alpha-N-acetylgalactosaminidase
Language English Country England, Great Britain Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
15676072
PubMed Central
PMC548690
DOI
10.1186/1471-2121-6-5
PII: 1471-2121-6-5
Knihovny.cz E-resources
- MeSH
- alpha-Galactosidase genetics metabolism MeSH
- alpha-N-Acetylgalactosaminidase chemistry genetics metabolism MeSH
- Phylogeny MeSH
- Cloning, Molecular MeSH
- Humans MeSH
- Lysosomes MeSH
- Evolution, Molecular MeSH
- Molecular Sequence Data MeSH
- Caenorhabditis elegans Proteins chemistry genetics metabolism MeSH
- Proteins MeSH
- Base Sequence MeSH
- Sequence Analysis, DNA MeSH
- Sequence Homology, Nucleic Acid MeSH
- Sequence Alignment MeSH
- Structural Homology, Protein MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- alpha-Galactosidase MeSH
- alpha-N-Acetylgalactosaminidase MeSH
- gana-1 protein, C elegans MeSH Browser
- lysosomal proteins MeSH Browser
- Caenorhabditis elegans Proteins MeSH
- Proteins MeSH
BACKGROUND: Human alpha-galactosidase A (alpha-GAL) and alpha-N-acetylgalactosaminidase (alpha-NAGA) are presumed to share a common ancestor. Deficiencies of these enzymes cause two well-characterized human lysosomal storage disorders (LSD)--Fabry (alpha-GAL deficiency) and Schindler (alpha-NAGA deficiency) diseases. Caenorhabditis elegans was previously shown to be a relevant model organism for several late endosomal/lysosomal membrane proteins associated with LSDs. The aim of this study was to identify and characterize C. elegans orthologs to both human lysosomal luminal proteins alpha-GAL and alpha-NAGA. RESULTS: BlastP searches for orthologs of human alpha-GAL and alpha-NAGA revealed a single C. elegans gene (R07B7.11) with homology to both human genes (alpha-galactosidase and alpha-N-acetylgalactosaminidase)--gana-1. We cloned and sequenced the complete gana-1 cDNA and elucidated the gene organization.Phylogenetic analyses and homology modeling of GANA-1 based on the 3D structure of chicken alpha-NAGA, rice alpha-GAL and human alpha-GAL suggest a close evolutionary relationship of GANA-1 to both human alpha-GAL and alpha-NAGA. Both alpha-GAL and alpha-NAGA enzymatic activities were detected in C. elegans mixed culture homogenates. However, alpha-GAL activity on an artificial substrate was completely inhibited by the alpha-NAGA inhibitor, N-acetyl-D-galactosamine.A GANA-1::GFP fusion protein expressed from a transgene, containing the complete gana-1 coding region and 3 kb of its hypothetical promoter, was not detectable under the standard laboratory conditions. The GFP signal was observed solely in a vesicular compartment of coelomocytes of the animals treated with Concanamycin A (CON A) or NH4Cl, agents that increase the pH of the cellular acidic compartment. Immunofluorescence detection of the fusion protein using polyclonal anti-GFP antibody showed a broader and coarsely granular cytoplasmic expression pattern in body wall muscle cells, intestinal cells, and a vesicular compartment of coelomocytes.Inhibition of gana-1 by RNA interference resulted in a decrease of both alpha-GAL and alpha-NAGA activities measured in mixed stage culture homogenates but did not cause any obvious phenotype. CONCLUSIONS: GANA-1 is a single C. elegans ortholog of both human alpha-GAL and alpha-NAGA proteins. Phylogenetic, homology modeling, biochemical and GFP expression analyses support the hypothesis that GANA-1 has dual enzymatic activity and is localized in an acidic cellular compartment.
See more in PubMed
Desnick RJ, Schindler D. α-N-Acetylgalactosaminidase Deficiency: Schindler Disease. In: Scriver CR, Beaudet AL, Sly WS and Valle D, editor. The Metabolic & Molecular Bases of Inherited Disease. 8th. Vol. 3. New York, McGraw-Hill Companies, Inc.; 2001. pp. 3483–3506.
Desnick RJ, Ioannou YA, Eng CM. α-Galactosidase A Deficiency: Fabry Disease. In: Scriver CR, Beaudet AL, Sly WS and Valle D, editor. The Metabolic & Molecular Bases of Inherited Disease. 8th. Vol. 3. New York, McGraw-Hill Companies, Inc.; 2001. pp. 3733–3774.
Dean KJ, Sung SS, Sweeley CC. The identification of alpha-galactosidase B from human liver as an alpha-N-acetylgalactosaminidase. Biochem Biophys Res Commun. 1977;77:1411–1417. PubMed
Schram AW, Hamers MN, Brouwer-Kelder B, Donker-Koopman WE, Tager JM. Enzymological properties and immunological characterization of alpha-galactosidase isoenzymes from normal and Fabry human liver. Biochim Biophys Acta. 1977;482:125–137. PubMed
Wang AM, Desnick RJ. Structural organization and complete sequence of the human alpha-N-acetylgalactosaminidase gene: homology with the alpha-galactosidase A gene provides evidence for evolution from a common ancestral gene. Genomics. 1991;10:133–142. doi: 10.1016/0888-7543(91)90493-X. PubMed DOI
Henrissat B, Davies G. Structural and sequence-based classification of glycoside hydrolases. Curr Opin Struct Biol. 1997;7:637–644. doi: 10.1016/S0959-440X(97)80072-3. PubMed DOI
Garman SC, Hannick L, Zhu A, Garboczi DN. The 1.9 A structure of alpha-N-acetylgalactosaminidase: molecular basis of glycosidase deficiency diseases. Structure (Camb) 2002;10:425–434. doi: 10.1016/S0969-2126(02)00726-8. PubMed DOI
Garman SC, Garboczi DN. The molecular defect leading to Fabry disease: structure of human alpha-galactosidase. J Mol Biol. 2004;337:319–335. doi: 10.1016/j.jmb.2004.01.035. PubMed DOI
Fujimoto Z, Kaneko S, Momma M, Kobayashi H, Mizuno H. Crystal structure of rice alpha-galactosidase complexed with D-galactose. J Biol Chem. 2003;278:20313–20318. doi: 10.1074/jbc.M302292200. PubMed DOI
Asfaw B, Ledvinova J, Dobrovolny R, Bakker HD, Desnick RJ, van Diggelen OP, de Jong JG, Kanzaki T, Chabas A, Maire I, Conzelmann E, Schindler D. Defects in degradation of blood group A and B glycosphingolipids in Schindler and Fabry diseases. J Lipid Res. 2002;43:1096–1104. doi: 10.1194/jlr.M100423-JLR200. PubMed DOI
Dean KJ, Sweeley CC. Studies on human liver alpha-galactosidases. II. Purification and enzymatic properties of alpha-galactosidase B (alpha-N-acetylgalactosaminidase) J Biol Chem. 1979;254:10001–10005. PubMed
Schram AW, Hamers MN, Tager JM. The identity of alpha-galactosidase B from liver. Adv Exp Med Biol. 1978;101:525–529. PubMed
Mayes JS, Scheerer JB, Sifers RN, Donaldson ML. Differential assay for lysosomal alpha-galactosidases in human tissues and its application to Fabry's disease. Clin Chim Acta. 1981;112:247–251. doi: 10.1016/0009-8981(81)90384-3. PubMed DOI
Genome sequence of the nematode C. elegans: a platform for investigating biology. The C. elegans Sequencing Consortium. Science. 1998;282:2012–2018. doi: 10.1126/science.282.5396.2012. PubMed DOI
Wormbase
The C. elegans ORFeome cloning project
Krause M. Transcription and Translation. In: Epstein HF and Shakes DC, editor. Caenorhabditis elegans: Modern Biological Analysis of an Organism. 1st. Vol. 48. San Diego, Academic Press, Inc.; 1995. pp. 483–512. (Methods in Cell Biology).
Nimmo R, Woollard A. Widespread organisation of C. elegans genes into operons: fact or function? Bioessays. 2002;24:983–987. doi: 10.1002/bies.10181. PubMed DOI
Blumenthal T, Gleason KS. Caenorhabditis elegans operons: form and function. Nat Rev Genet. 2003;4:112–120. doi: 10.1038/nrg995. PubMed DOI
Blom D, Speijer D, Linthorst GE, Donker-Koopman WG, Strijland A, Aerts JM. Recombinant enzyme therapy for Fabry disease: absence of editing of human alpha-galactosidase A mRNA. Am J Hum Genet. 2003;72:23–31. doi: 10.1086/345309. PubMed DOI PMC
Nadeau JH, Sankoff D. Comparable rates of gene loss and functional divergence after genome duplications early in vertebrate evolution. Genetics. 1997;147:1259–1266. PubMed PMC
Sarkis GJ, Kurpiewski MR, Ashcom JD, Jen-Jacobson L, Jacobson LA. Proteases of the nematode Caenorhabditis elegans. Arch Biochem Biophys. 1988;261:80–90. doi: 10.1016/0003-9861(88)90106-3. PubMed DOI
Sebastiano M, D'Alessio M, Bazzicalupo P. Beta-glucuronidase mutants of the nematode Caenorhabditis elegans. Genetics. 1986;112:459–468. PubMed PMC
Karageorgos LE, Isaac EL, Brooks DA, Ravenscroft EM, Davey R, Hopwood JJ, Meikle PJ. Lysosomal biogenesis in lysosomal storage disorders. Exp Cell Res. 1997;234:85–97. doi: 10.1006/excr.1997.3581. PubMed DOI
Conzelmann E, Sandhoff K. Glycolipid and glycoprotein degradation. Adv Enzymol Relat Areas Mol Biol. 1987;60:89–216. PubMed
Kamath RS, Martinez-Campos M, Zipperlen P, Fraser AG, Ahringer J. Effectiveness of specific RNA-mediated interference through ingested double-stranded RNA in Caenorhabditis elegans. Genome Biol. 2000;2 PubMed PMC
Kostich M, Fire A, Fambrough DM. Identification and molecular-genetic characterization of a LAMP/CD68-like protein from Caenorhabditis elegans. J Cell Sci. 2000;113:2595–2606. PubMed
Fares H, Greenwald I. Regulation of endocytosis by CUP-5, the Caenorhabditis elegans mucolipin-1 homolog. Nat Genet. 2001;28:64–68. doi: 10.1038/88281. PubMed DOI
Kneen M, Farinas J, Li Y, Verkman AS. Green fluorescent protein as a noninvasive intracellular pH indicator. Biophys J. 1998;74:1591–1599. PubMed PMC
Mello C, Fire A. DNA transformation. In: Epstein HF and Shakes DC, editor. Caenorhabditis elegans: Modern Biological Analysis of an Organism. 1st. Vol. 48. San Diego, Academic Press; 1995. pp. 451–481.
Stinchcomb DT, Shaw JE, Carr SH, Hirsh D. Extrachromosomal DNA transformation of Caenorhabditis elegans. Mol Cell Biol. 1985;5:3484–3496. PubMed PMC
Clokey GV, Jacobson LA. The autofluorescent "lipofuscin granules" in the intestinal cells of Caenorhabditis elegans are secondary lysosomes. Mech Ageing Dev. 1986;35:79–94. doi: 10.1016/0047-6374(86)90068-0. PubMed DOI
Poole B, Ohkuma S. Effect of weak bases on the intralysosomal pH in mouse peritoneal macrophages. J Cell Biol. 1981;90:665–669. doi: 10.1083/jcb.90.3.665. PubMed DOI PMC
Demaurex N. pH Homeostasis of cellular organelles. News Physiol Sci. 2002;17:1–5. PubMed
Brenner S. The genetics of Caenorhabditis elegans. Genetics. 1974;77:71–94. PubMed PMC
Mello CC, Kramer JM, Stinchcomb D, Ambros V. Efficient gene transfer in C.elegans: extrachromosomal maintenance and integration of transforming sequences. Embo J. 1991;10:3959–3970. PubMed PMC
Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature. 1998;391:806–811. doi: 10.1038/35888. PubMed DOI
WormBase Release WS100
WormBase Release WS110
Wormbase BLAST or BLAT Search
GenBank
Chomczynski P, Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987;162:156–159. doi: 10.1016/0003-2697(87)90021-2. PubMed DOI
Protein families database of alignments and HMMs
Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994;22:4673–4680. PubMed PMC
Swiss-Prot / TrEMBL database
Felsenstein J. PHYLIP - Phylogeny Inference Package (Version 3.2). Cladistics. 1988;5:164–166.
Felsenstein J. Confidence-Limits on Phylogenies - an Approach Using the Bootstrap. Evolution. 1985;39:783–791. PubMed
Needleman SB, Wunsch CD. A general method applicable to the search for similarities in the amino acid sequence of two proteins. J Mol Biol. 1970;48:443–453. doi: 10.1016/0022-2836(70)90057-4. PubMed DOI
Rice P, Longden I, Bleasby A. EMBOSS: The European molecular biology open software suite. Trends in Genetics. 2000;16:276–277. doi: 10.1016/S0168-9525(00)02024-2. PubMed DOI
Bendtsen JD, Nielsen H, von Heijne G, Brunak S. Improved prediction of signal peptides: SignalP 3.0. J Mol Biol. 2004;340:783–795. doi: 10.1016/j.jmb.2004.05.028. PubMed DOI
PDB - Protein Data Bank
Guex N, Peitsch MC. SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis. 1997;18:2714–2723. PubMed
PovRay software
Nonet ML, Grundahl K, Meyer BJ, Rand JB. Synaptic function is impaired but not eliminated in C. elegans mutants lacking synaptotagmin. Cell. 1993;73:1291–1305. doi: 10.1016/0092-8674(93)90357-V. PubMed DOI
Hartree EF. Determination of protein: a modification of the Lowry method that gives a linear photometric response. Anal Biochem. 1972;48:422–427. doi: 10.1016/0003-2697(72)90094-2. PubMed DOI
Gallagher S, Winston SE, Fuller SA, Hurrell JGR. Analysis of Proteins. In: Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA and Struhl K, editor. Current Protocols in Molecular Biology. 1st. Vol. 2. Hoboken, John Wiley & Sons, Inc.; 1997. p. 10.8.
Wenger DA, Williams C. Screening for Lysosomal Disorders. In: Hommes FA, editor. Techniques in Diagnostic Human Biochemical Genetics: A Laboratory Manual. 1st. New York, Wiley-Liss, Inc.; 1991. pp. 587–617.
Perilipin-related protein regulates lipid metabolism in C. elegans