Whey Protein Isolate-Chitosan PolyElectrolyte Nanoparticles as a Drug Delivery System
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
RP/CPS/2022/005
Ministry of Education, Youth and Sports of the Czech Republic - DKRVO
PubMed
36838712
PubMed Central
PMC9960267
DOI
10.3390/molecules28041724
PII: molecules28041724
Knihovny.cz E-zdroje
- Klíčová slova
- TPP, WPI, chitosan, colloidal stability,
- MeSH
- chitosan * chemie MeSH
- lékové transportní systémy MeSH
- nanočástice * chemie MeSH
- nosiče léků chemie MeSH
- polyelektrolyty chemie MeSH
- syrovátkové proteiny MeSH
- velikost částic MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- chitosan * MeSH
- nosiče léků MeSH
- polyelektrolyty MeSH
- syrovátkové proteiny MeSH
Whey protein isolate (WPI), employed as a carrier for a wide range of bioactive substances, suffers from a lack of colloidal stability in physiological conditions. Herein, we developed innovative stabilized PolyElectrolyte Nanoparticles (PENs) obtained by two techniques: polyelectrolyte complexation of negatively charged WPI and positively charged chitosan (CS), and ionic gelation in the presence of polyanion tripolyphosphate (TPP). Therefore, the WPI-based core was coated with a CS-based shell and then stabilized by TPP at pH 8. The nanostructures were characterized by physiochemical methods, and their encapsulation efficiency and in vitro release were evaluated. The spherical NPs with an average size of 248.57 ± 5.00 nm and surface charge of +10.80 ± 0.43 mV demonstrated high encapsulation efficiency (92.79 ± 0.69) and sustained release of a positively charged chemotherapeutic agent such as doxorubicin (DOX). Z-average size and size distribution also presented negligible increases in size and aggregates during the three weeks. The results obtained confirm the effectiveness of the simultaneous application of these methods to improve the colloidal stability of PEN.
Zobrazit více v PubMed
Liu Z., Tabakman S., Welsher K., Dai H. Carbon nanotubes in biology and medicine: In vitro and in vivo detection, imaging and drug delivery. Nano Res. 2009;2:85–120. doi: 10.1007/s12274-009-9009-8. PubMed DOI PMC
Zegarra-Urquia C.L., Santiago J., Bumgardner J.D., Vega-Baudrit J., Hernández-Escobar C.A., Zaragoza-Contreras E.A. Synthesis of nanoparticles of the chitosan-poly ((α, β)-DL-aspartic acid) polyelectrolite complex as hydrophilic drug carrier. Int. J. Polym. Mater. Polym. Biomater. 2022;72:497–506. doi: 10.1080/00914037.2022.2029440. DOI
Teixeira F.J., Santos H.O., Howell S.L., Pimentel G.D. Whey protein in cancer therapy: A narrative review. Pharmacol. Res. 2019;144:245–256. doi: 10.1016/j.phrs.2019.04.019. PubMed DOI
Hong S., Choi D.W., Kim H.N., Park C.G., Lee W., Park H.H. Protein-based nanoparticles as drug delivery systems. Pharmaceutics. 2020;12:604. doi: 10.3390/pharmaceutics12070604. PubMed DOI PMC
Ghumman S.A., Mahmood A., Noreen S., Aslam A., Ijaz B., Amanat A., Kausar R., Rana M., Hameed H. Chitosan-Linseed mucilage polyelectrolyte complex nanoparticles of Methotrexate: In vitro cytotoxic efficacy and toxicological studies. Arab. J. Chem. 2023;16:104463. doi: 10.1016/j.arabjc.2022.104463. DOI
Motiei M., Aboutalebi F., Forouzanfar M., Dormiani K., Nasr-Esfahani M.H., Mirahmadi-Zare S.Z. Smart co-delivery of miR-34a and cytotoxic peptides (LTX-315 and melittin) by chitosan based polyelectrolyte nanocarriers for specific cancer cell death induction. Mater. Sci. Eng. C. 2021;128:112258. doi: 10.1016/j.msec.2021.112258. PubMed DOI
Motiei M., Sedlařík V., Lucia L.A., Fei H., Münster L. Stabilization of chitosan-based polyelectrolyte nanoparticle cargo delivery biomaterials by a multiple ionic cross-linking strategy. Carbohydr. Polym. 2020;231:115709. doi: 10.1016/j.carbpol.2019.115709. PubMed DOI
Jacob J., Haponiuk J.T., Thomas S., Gopi S. Biopolymer based nanomaterials in drug delivery systems: A review. Mater. Today Chem. 2018;9:43–55. doi: 10.1016/j.mtchem.2018.05.002. DOI
Fattah Hassan M.A.E. Preparation and Characterization of Sustained Released Zinc Citrate Encapsulated in Whey Protein Nanoparticles. Pak. J. Biol. Sci. PJBS. 2018;21:448–453. PubMed
McClements D.J. Designing biopolymer microgels to encapsulate, protect and deliver bioactive components: Physicochemical aspects. Adv. Colloid Interface Sci. 2017;240:31–59. doi: 10.1016/j.cis.2016.12.005. PubMed DOI
Xu W., Tang Y., Yang Y., Wang G., Zhou S. Establishment of a stable complex formed from whey protein isolate and chitosan and its stability under environmental stresses. Int. J. Biol. Macromol. 2020;165:2823–2833. doi: 10.1016/j.ijbiomac.2020.10.130. PubMed DOI
Cortés-Morales E.A., Mendez-Montealvo G., Velazquez G. Interactions of the molecular assembly of polysaccharide-protein systems as encapsulation materials. A review. Adv. Colloid Interface Sci. 2021;295:102398. doi: 10.1016/j.cis.2021.102398. PubMed DOI
Usman A., Zia K.M., Zuber M., Tabasum S., Rehman S., Zia F. Chitin and chitosan based polyurethanes: A review of recent advances and prospective biomedical applications. Int. J. Biol. Macromol. 2016;86:630–645. doi: 10.1016/j.ijbiomac.2016.02.004. PubMed DOI
Motiei M., Kashanian S. Novel amphiphilic chitosan nanocarriers for sustained oral delivery of hydrophobic drugs. Eur. J. Pharm. Sci. 2017;99:285–291. doi: 10.1016/j.ejps.2016.12.035. PubMed DOI
Speiciene V., Guilmineau F., Kulozik U., Leskauskaite D. The effect of chitosan on the properties of emulsions stabilized by whey proteins. Food Chem. 2007;102:1048–1054. doi: 10.1016/j.foodchem.2006.06.041. DOI
Montilla A., Casal E., Moreno F.J., Belloque J., Olano A., Corzo N. Isolation of bovine β-lactoglobulin from complexes with chitosan. Int. Dairy J. 2007;17:459–464. doi: 10.1016/j.idairyj.2006.05.009. DOI
Shu X., Zhu K. A novel approach to prepare tripolyphosphate/chitosan complex beads for controlled release drug delivery. Int. J. Pharm. 2000;201:51–58. doi: 10.1016/S0378-5173(00)00403-8. PubMed DOI
Diop M., Auberval N., Viciglio A., Langlois A., Bietiger W., Mura C., Peronet C., Bekel A., David D.J., Zhao M. Design, characterisation, and bioefficiency of insulin–chitosan nanoparticles after stabilisation by freeze-drying or cross-linking. Int. J. Pharm. 2015;491:402–408. doi: 10.1016/j.ijpharm.2015.05.065. PubMed DOI
Motiei M., Mirahmadi-Zare S.Z., Nasr-Esfahani M.H. Chemical stabilization of γ-polyglutamate by chitosan and the effect of co-solvents on the stability. Biophys. Chem. 2021;275:106605. doi: 10.1016/j.bpc.2021.106605. PubMed DOI
Wu M., Huang S. Magnetic nanoparticles in cancer diagnosis, drug delivery and treatment. Mol. Clin. Oncol. 2017;7:738–746. doi: 10.3892/mco.2017.1399. PubMed DOI PMC
Gohargani M., Lashkari H., Shirazinejad A. Study on biodegradable chitosan-whey protein-based film containing bionanocomposite TiO2 and Zataria multiflora essential oil. J. Food Qual. 2020;2020:8844167. doi: 10.1155/2020/8844167. DOI
Zhai X., Zhang X., Ao H., Yin Y., Li X., Ren D. Preparation and characterization of whey protein isolate/chitosan/microcrystalline cellulose composite films. Packag. Technol. Sci. 2021;34:589–599. doi: 10.1002/pts.2597. DOI
De Queiroz J.L.C., Costa R.O.D.A., Matias L.L.R., De Medeiros A.F., Gomes A.F.T., Pais T.D.S., Passos T.S., Maciel B.L.L., Dos Santos E.A., Morais A.H.D.A. Chitosan-whey protein nanoparticles improve encapsulation efficiency and stability of a trypsin inhibitor isolated from Tamarindus indica L. Food Hydrocoll. 2018;84:247–256. doi: 10.1016/j.foodhyd.2018.06.010. DOI
Xu W., Lv K., Mu W., Zhou S., Yang Y. Encapsulation of α-tocopherol in whey protein isolate/chitosan particles using oil-in-water emulsion with optimal stability and bioaccessibility. LWT. 2021;148:111724. doi: 10.1016/j.lwt.2021.111724. DOI
Aguiar A.J., de Queiroz J.L., Santos P.P., Camillo C.S., Serquiz A.C., Costa I.S., Oliveira G.S., Gomes A.F., Matias L.L., Costa R.O.A., et al. Beneficial Effects of Tamarind Trypsin Inhibitor in Chitosan–Whey Protein Nanoparticles on Hepatic Injury Induced High Glycemic Index Diet: A Preclinical Study. Int. J. Mol. Sci. 2021;22:9968. doi: 10.3390/ijms22189968. PubMed DOI PMC
Matias L.L., Costa R.O., Passos T.S., Queiroz J.L., Serquiz A.C., Maciel B.L., Santos P.P., Camillo C.S., Gonçalves C., Amado I.R., et al. Tamarind trypsin inhibitor in chitosan–whey protein nanoparticles reduces fasting blood glucose levels without compromising insulinemia: A preclinical study. Nutrients. 2019;11:2770. doi: 10.3390/nu11112770. PubMed DOI PMC
Lin C., Kuo T.-C., Lin J.-C., Ho Y.-C., Mi F.-L. Delivery of polysaccharides from Ophiopogon japonicus (OJPs) using OJPs/chitosan/whey protein co-assembled nanoparticles to treat defective intestinal epithelial tight junction barrier. Int. J. Biol. Macromol. 2020;160:558–570. doi: 10.1016/j.ijbiomac.2020.05.151. PubMed DOI
Xu F.-Y., Lin J.-W., Wang R., Chen B.-R., Li J., Wen Q.-H., Zeng X.-A. Succinylated whey protein isolate-chitosan core–shell composite particles as a novel carrier: Self-assembly mechanism and stability studies. Food Res. Int. 2022;160:111695. doi: 10.1016/j.foodres.2022.111695. PubMed DOI
Alves A.C., Magarkar A., Horta M., Lima J.L., Bunker A., Nunes C., Reis S. Influence of doxorubicin on model cell membrane properties: Insights from in vitro and in silico studies. Sci. Rep. 2017;7:6343. doi: 10.1038/s41598-017-06445-z. PubMed DOI PMC
Ferreira D.C.M., Ferreira S.O., de Alvarenga E.S., Soares N.d.F.F., dos Reis Coimbra J.S., de Oliveira E.B. Polyelectrolyte complexes (PECs) obtained from chitosan and carboxymethylcellulose: A physicochemical and microstructural study. Carbohydr. Polym. Technol. Appl. 2022;3:100197. doi: 10.1016/j.carpta.2022.100197. DOI
Chaudhuri A., Ramesh K., Kumar D.N., Dehari D., Singh S., Kumar D., Agrawal A.K. Polymeric micelles: A novel drug delivery system for the treatment of breast cancer. J. Drug Deliv. Sci. Technol. 2022;77:103886. doi: 10.1016/j.jddst.2022.103886. DOI
Motiei M., Kashanian S., Lucia L.A., Khazaei M. Intrinsic parameters for the synthesis and tuned properties of amphiphilic chitosan drug delivery nanocarriers. J. Control. Release. 2017;260:213–225. doi: 10.1016/j.jconrel.2017.06.010. PubMed DOI
Danaei M., Dehghankhold M., Ataei S., Hasanzadeh Davarani F., Javanmard R., Dokhani A., Khorasani S., Mozafari M. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics. 2018;10:57. doi: 10.3390/pharmaceutics10020057. PubMed DOI PMC
Sultan M.H., Moni S.S., Madkhali O.A., Bakkari M.A., Alshahrani S., Alqahtani S.S., Alhakamy N.A., Mohan S., Ghazwani M., Bukhary H.A. Characterization of cisplatin-loaded chitosan nanoparticles and rituximab-linked surfaces as target-specific injectable nano-formulations for combating cancer. Sci. Rep. 2022;12:468. doi: 10.1038/s41598-021-04427-w. PubMed DOI PMC
Hecq J., Siepmann F., Siepmann J., Amighi K., Goole J. Development and evaluation of chitosan and chitosan derivative nanoparticles containing insulin for oral administration. Drug Dev. Ind. Pharm. 2015;41:2037–2044. doi: 10.3109/03639045.2015.1044904. PubMed DOI
Kaszuba M., Corbett J., Watson F.M., Jones A. High-concentration zeta potential measurements using light-scattering techniques. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2010;368:4439–4451. doi: 10.1098/rsta.2010.0175. PubMed DOI PMC
Bhattacharjee S. DLS and zeta potential–what they are and what they are not? J. Control. Release. 2016;235:337–351. doi: 10.1016/j.jconrel.2016.06.017. PubMed DOI
Wilson B., Samanta M.K., Santhi K., Kumar K.P.S., Paramakrishnan N., Suresh B. Targeted delivery of tacrine into the brain with polysorbate 80-coated poly (n-butylcyanoacrylate) nanoparticles. Eur. J. Pharm. Biopharm. 2008;70:75–84. doi: 10.1016/j.ejpb.2008.03.009. PubMed DOI
Ray S., Sinha P., Laha B., Maiti S., Bhattacharyya U.K., Nayak A.K. Polysorbate 80 coated crosslinked chitosan nanoparticles of ropinirole hydrochloride for brain targeting. J. Drug Deliv. Sci. Technol. 2018;48:21–29. doi: 10.1016/j.jddst.2018.08.016. DOI
Hunter R.J. Zeta Potential in Colloid Science: Principles and Applications. Volume 2 Academic Press; Cambridge, MA, USA: 2013.
Huang G.-Q., Sun Y.-T., Xiao J.-X., Yang J. Complex coacervation of soybean protein isolate and chitosan. Food Chem. 2012;135:534–539. doi: 10.1016/j.foodchem.2012.04.140. PubMed DOI
Rampino A., Borgogna M., Blasi P., Bellich B., Cesàro A. Chitosan nanoparticles: Preparation, size evolution and stability. Int. J. Pharm. 2013;455:219–228. doi: 10.1016/j.ijpharm.2013.07.034. PubMed DOI
Wu D., Delair T. Stabilization of chitosan/hyaluronan colloidal polyelectrolyte complexes in physiological conditions. Carbohydr. Polym. 2015;119:149–158. doi: 10.1016/j.carbpol.2014.11.042. PubMed DOI
Verheul R.J., Slütter B., Bal S.M., Bouwstra J.A., Jiskoot W., Hennink W.E. Covalently stabilized trimethyl chitosan-hyaluronic acid nanoparticles for nasal and intradermal vaccination. J. Control. Release. 2011;156:46–52. doi: 10.1016/j.jconrel.2011.07.014. PubMed DOI
Zhang C., Qineng P., Zhang H. Self-assembly and characterization of paclitaxel-loaded N-octyl-O-sulfate chitosan micellar system. Colloids Surf. B Biointerfaces. 2004;39:69–75. doi: 10.1016/j.colsurfb.2004.09.002. PubMed DOI
Dragan E.S., Ghiorghita C.A., Dinu M.V., Duceac I.A., Coseri S. Fabrication of self-antibacterial chitosan/oxidized starch polyelectrolyte complex sponges for controlled delivery of curcumin. Food Hydrocoll. 2023;135:108147. doi: 10.1016/j.foodhyd.2022.108147. DOI
Mattu C., Li R., Ciardelli G. Chitosan nanoparticles as therapeutic protein nanocarriers: The effect of pH on particle formation and encapsulation efficiency. Polym. Composites. 2013;34:1538–1545. doi: 10.1002/pc.22415. DOI