Whey Protein Isolate-Chitosan PolyElectrolyte Nanoparticles as a Drug Delivery System

. 2023 Feb 11 ; 28 (4) : . [epub] 20230211

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36838712

Grantová podpora
RP/CPS/2022/005 Ministry of Education, Youth and Sports of the Czech Republic - DKRVO

Whey protein isolate (WPI), employed as a carrier for a wide range of bioactive substances, suffers from a lack of colloidal stability in physiological conditions. Herein, we developed innovative stabilized PolyElectrolyte Nanoparticles (PENs) obtained by two techniques: polyelectrolyte complexation of negatively charged WPI and positively charged chitosan (CS), and ionic gelation in the presence of polyanion tripolyphosphate (TPP). Therefore, the WPI-based core was coated with a CS-based shell and then stabilized by TPP at pH 8. The nanostructures were characterized by physiochemical methods, and their encapsulation efficiency and in vitro release were evaluated. The spherical NPs with an average size of 248.57 ± 5.00 nm and surface charge of +10.80 ± 0.43 mV demonstrated high encapsulation efficiency (92.79 ± 0.69) and sustained release of a positively charged chemotherapeutic agent such as doxorubicin (DOX). Z-average size and size distribution also presented negligible increases in size and aggregates during the three weeks. The results obtained confirm the effectiveness of the simultaneous application of these methods to improve the colloidal stability of PEN.

Zobrazit více v PubMed

Liu Z., Tabakman S., Welsher K., Dai H. Carbon nanotubes in biology and medicine: In vitro and in vivo detection, imaging and drug delivery. Nano Res. 2009;2:85–120. doi: 10.1007/s12274-009-9009-8. PubMed DOI PMC

Zegarra-Urquia C.L., Santiago J., Bumgardner J.D., Vega-Baudrit J., Hernández-Escobar C.A., Zaragoza-Contreras E.A. Synthesis of nanoparticles of the chitosan-poly ((α, β)-DL-aspartic acid) polyelectrolite complex as hydrophilic drug carrier. Int. J. Polym. Mater. Polym. Biomater. 2022;72:497–506. doi: 10.1080/00914037.2022.2029440. DOI

Teixeira F.J., Santos H.O., Howell S.L., Pimentel G.D. Whey protein in cancer therapy: A narrative review. Pharmacol. Res. 2019;144:245–256. doi: 10.1016/j.phrs.2019.04.019. PubMed DOI

Hong S., Choi D.W., Kim H.N., Park C.G., Lee W., Park H.H. Protein-based nanoparticles as drug delivery systems. Pharmaceutics. 2020;12:604. doi: 10.3390/pharmaceutics12070604. PubMed DOI PMC

Ghumman S.A., Mahmood A., Noreen S., Aslam A., Ijaz B., Amanat A., Kausar R., Rana M., Hameed H. Chitosan-Linseed mucilage polyelectrolyte complex nanoparticles of Methotrexate: In vitro cytotoxic efficacy and toxicological studies. Arab. J. Chem. 2023;16:104463. doi: 10.1016/j.arabjc.2022.104463. DOI

Motiei M., Aboutalebi F., Forouzanfar M., Dormiani K., Nasr-Esfahani M.H., Mirahmadi-Zare S.Z. Smart co-delivery of miR-34a and cytotoxic peptides (LTX-315 and melittin) by chitosan based polyelectrolyte nanocarriers for specific cancer cell death induction. Mater. Sci. Eng. C. 2021;128:112258. doi: 10.1016/j.msec.2021.112258. PubMed DOI

Motiei M., Sedlařík V., Lucia L.A., Fei H., Münster L. Stabilization of chitosan-based polyelectrolyte nanoparticle cargo delivery biomaterials by a multiple ionic cross-linking strategy. Carbohydr. Polym. 2020;231:115709. doi: 10.1016/j.carbpol.2019.115709. PubMed DOI

Jacob J., Haponiuk J.T., Thomas S., Gopi S. Biopolymer based nanomaterials in drug delivery systems: A review. Mater. Today Chem. 2018;9:43–55. doi: 10.1016/j.mtchem.2018.05.002. DOI

Fattah Hassan M.A.E. Preparation and Characterization of Sustained Released Zinc Citrate Encapsulated in Whey Protein Nanoparticles. Pak. J. Biol. Sci. PJBS. 2018;21:448–453. PubMed

McClements D.J. Designing biopolymer microgels to encapsulate, protect and deliver bioactive components: Physicochemical aspects. Adv. Colloid Interface Sci. 2017;240:31–59. doi: 10.1016/j.cis.2016.12.005. PubMed DOI

Xu W., Tang Y., Yang Y., Wang G., Zhou S. Establishment of a stable complex formed from whey protein isolate and chitosan and its stability under environmental stresses. Int. J. Biol. Macromol. 2020;165:2823–2833. doi: 10.1016/j.ijbiomac.2020.10.130. PubMed DOI

Cortés-Morales E.A., Mendez-Montealvo G., Velazquez G. Interactions of the molecular assembly of polysaccharide-protein systems as encapsulation materials. A review. Adv. Colloid Interface Sci. 2021;295:102398. doi: 10.1016/j.cis.2021.102398. PubMed DOI

Usman A., Zia K.M., Zuber M., Tabasum S., Rehman S., Zia F. Chitin and chitosan based polyurethanes: A review of recent advances and prospective biomedical applications. Int. J. Biol. Macromol. 2016;86:630–645. doi: 10.1016/j.ijbiomac.2016.02.004. PubMed DOI

Motiei M., Kashanian S. Novel amphiphilic chitosan nanocarriers for sustained oral delivery of hydrophobic drugs. Eur. J. Pharm. Sci. 2017;99:285–291. doi: 10.1016/j.ejps.2016.12.035. PubMed DOI

Speiciene V., Guilmineau F., Kulozik U., Leskauskaite D. The effect of chitosan on the properties of emulsions stabilized by whey proteins. Food Chem. 2007;102:1048–1054. doi: 10.1016/j.foodchem.2006.06.041. DOI

Montilla A., Casal E., Moreno F.J., Belloque J., Olano A., Corzo N. Isolation of bovine β-lactoglobulin from complexes with chitosan. Int. Dairy J. 2007;17:459–464. doi: 10.1016/j.idairyj.2006.05.009. DOI

Shu X., Zhu K. A novel approach to prepare tripolyphosphate/chitosan complex beads for controlled release drug delivery. Int. J. Pharm. 2000;201:51–58. doi: 10.1016/S0378-5173(00)00403-8. PubMed DOI

Diop M., Auberval N., Viciglio A., Langlois A., Bietiger W., Mura C., Peronet C., Bekel A., David D.J., Zhao M. Design, characterisation, and bioefficiency of insulin–chitosan nanoparticles after stabilisation by freeze-drying or cross-linking. Int. J. Pharm. 2015;491:402–408. doi: 10.1016/j.ijpharm.2015.05.065. PubMed DOI

Motiei M., Mirahmadi-Zare S.Z., Nasr-Esfahani M.H. Chemical stabilization of γ-polyglutamate by chitosan and the effect of co-solvents on the stability. Biophys. Chem. 2021;275:106605. doi: 10.1016/j.bpc.2021.106605. PubMed DOI

Wu M., Huang S. Magnetic nanoparticles in cancer diagnosis, drug delivery and treatment. Mol. Clin. Oncol. 2017;7:738–746. doi: 10.3892/mco.2017.1399. PubMed DOI PMC

Gohargani M., Lashkari H., Shirazinejad A. Study on biodegradable chitosan-whey protein-based film containing bionanocomposite TiO2 and Zataria multiflora essential oil. J. Food Qual. 2020;2020:8844167. doi: 10.1155/2020/8844167. DOI

Zhai X., Zhang X., Ao H., Yin Y., Li X., Ren D. Preparation and characterization of whey protein isolate/chitosan/microcrystalline cellulose composite films. Packag. Technol. Sci. 2021;34:589–599. doi: 10.1002/pts.2597. DOI

De Queiroz J.L.C., Costa R.O.D.A., Matias L.L.R., De Medeiros A.F., Gomes A.F.T., Pais T.D.S., Passos T.S., Maciel B.L.L., Dos Santos E.A., Morais A.H.D.A. Chitosan-whey protein nanoparticles improve encapsulation efficiency and stability of a trypsin inhibitor isolated from Tamarindus indica L. Food Hydrocoll. 2018;84:247–256. doi: 10.1016/j.foodhyd.2018.06.010. DOI

Xu W., Lv K., Mu W., Zhou S., Yang Y. Encapsulation of α-tocopherol in whey protein isolate/chitosan particles using oil-in-water emulsion with optimal stability and bioaccessibility. LWT. 2021;148:111724. doi: 10.1016/j.lwt.2021.111724. DOI

Aguiar A.J., de Queiroz J.L., Santos P.P., Camillo C.S., Serquiz A.C., Costa I.S., Oliveira G.S., Gomes A.F., Matias L.L., Costa R.O.A., et al. Beneficial Effects of Tamarind Trypsin Inhibitor in Chitosan–Whey Protein Nanoparticles on Hepatic Injury Induced High Glycemic Index Diet: A Preclinical Study. Int. J. Mol. Sci. 2021;22:9968. doi: 10.3390/ijms22189968. PubMed DOI PMC

Matias L.L., Costa R.O., Passos T.S., Queiroz J.L., Serquiz A.C., Maciel B.L., Santos P.P., Camillo C.S., Gonçalves C., Amado I.R., et al. Tamarind trypsin inhibitor in chitosan–whey protein nanoparticles reduces fasting blood glucose levels without compromising insulinemia: A preclinical study. Nutrients. 2019;11:2770. doi: 10.3390/nu11112770. PubMed DOI PMC

Lin C., Kuo T.-C., Lin J.-C., Ho Y.-C., Mi F.-L. Delivery of polysaccharides from Ophiopogon japonicus (OJPs) using OJPs/chitosan/whey protein co-assembled nanoparticles to treat defective intestinal epithelial tight junction barrier. Int. J. Biol. Macromol. 2020;160:558–570. doi: 10.1016/j.ijbiomac.2020.05.151. PubMed DOI

Xu F.-Y., Lin J.-W., Wang R., Chen B.-R., Li J., Wen Q.-H., Zeng X.-A. Succinylated whey protein isolate-chitosan core–shell composite particles as a novel carrier: Self-assembly mechanism and stability studies. Food Res. Int. 2022;160:111695. doi: 10.1016/j.foodres.2022.111695. PubMed DOI

Alves A.C., Magarkar A., Horta M., Lima J.L., Bunker A., Nunes C., Reis S. Influence of doxorubicin on model cell membrane properties: Insights from in vitro and in silico studies. Sci. Rep. 2017;7:6343. doi: 10.1038/s41598-017-06445-z. PubMed DOI PMC

Ferreira D.C.M., Ferreira S.O., de Alvarenga E.S., Soares N.d.F.F., dos Reis Coimbra J.S., de Oliveira E.B. Polyelectrolyte complexes (PECs) obtained from chitosan and carboxymethylcellulose: A physicochemical and microstructural study. Carbohydr. Polym. Technol. Appl. 2022;3:100197. doi: 10.1016/j.carpta.2022.100197. DOI

Chaudhuri A., Ramesh K., Kumar D.N., Dehari D., Singh S., Kumar D., Agrawal A.K. Polymeric micelles: A novel drug delivery system for the treatment of breast cancer. J. Drug Deliv. Sci. Technol. 2022;77:103886. doi: 10.1016/j.jddst.2022.103886. DOI

Motiei M., Kashanian S., Lucia L.A., Khazaei M. Intrinsic parameters for the synthesis and tuned properties of amphiphilic chitosan drug delivery nanocarriers. J. Control. Release. 2017;260:213–225. doi: 10.1016/j.jconrel.2017.06.010. PubMed DOI

Danaei M., Dehghankhold M., Ataei S., Hasanzadeh Davarani F., Javanmard R., Dokhani A., Khorasani S., Mozafari M. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics. 2018;10:57. doi: 10.3390/pharmaceutics10020057. PubMed DOI PMC

Sultan M.H., Moni S.S., Madkhali O.A., Bakkari M.A., Alshahrani S., Alqahtani S.S., Alhakamy N.A., Mohan S., Ghazwani M., Bukhary H.A. Characterization of cisplatin-loaded chitosan nanoparticles and rituximab-linked surfaces as target-specific injectable nano-formulations for combating cancer. Sci. Rep. 2022;12:468. doi: 10.1038/s41598-021-04427-w. PubMed DOI PMC

Hecq J., Siepmann F., Siepmann J., Amighi K., Goole J. Development and evaluation of chitosan and chitosan derivative nanoparticles containing insulin for oral administration. Drug Dev. Ind. Pharm. 2015;41:2037–2044. doi: 10.3109/03639045.2015.1044904. PubMed DOI

Kaszuba M., Corbett J., Watson F.M., Jones A. High-concentration zeta potential measurements using light-scattering techniques. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2010;368:4439–4451. doi: 10.1098/rsta.2010.0175. PubMed DOI PMC

Bhattacharjee S. DLS and zeta potential–what they are and what they are not? J. Control. Release. 2016;235:337–351. doi: 10.1016/j.jconrel.2016.06.017. PubMed DOI

Wilson B., Samanta M.K., Santhi K., Kumar K.P.S., Paramakrishnan N., Suresh B. Targeted delivery of tacrine into the brain with polysorbate 80-coated poly (n-butylcyanoacrylate) nanoparticles. Eur. J. Pharm. Biopharm. 2008;70:75–84. doi: 10.1016/j.ejpb.2008.03.009. PubMed DOI

Ray S., Sinha P., Laha B., Maiti S., Bhattacharyya U.K., Nayak A.K. Polysorbate 80 coated crosslinked chitosan nanoparticles of ropinirole hydrochloride for brain targeting. J. Drug Deliv. Sci. Technol. 2018;48:21–29. doi: 10.1016/j.jddst.2018.08.016. DOI

Hunter R.J. Zeta Potential in Colloid Science: Principles and Applications. Volume 2 Academic Press; Cambridge, MA, USA: 2013.

Huang G.-Q., Sun Y.-T., Xiao J.-X., Yang J. Complex coacervation of soybean protein isolate and chitosan. Food Chem. 2012;135:534–539. doi: 10.1016/j.foodchem.2012.04.140. PubMed DOI

Rampino A., Borgogna M., Blasi P., Bellich B., Cesàro A. Chitosan nanoparticles: Preparation, size evolution and stability. Int. J. Pharm. 2013;455:219–228. doi: 10.1016/j.ijpharm.2013.07.034. PubMed DOI

Wu D., Delair T. Stabilization of chitosan/hyaluronan colloidal polyelectrolyte complexes in physiological conditions. Carbohydr. Polym. 2015;119:149–158. doi: 10.1016/j.carbpol.2014.11.042. PubMed DOI

Verheul R.J., Slütter B., Bal S.M., Bouwstra J.A., Jiskoot W., Hennink W.E. Covalently stabilized trimethyl chitosan-hyaluronic acid nanoparticles for nasal and intradermal vaccination. J. Control. Release. 2011;156:46–52. doi: 10.1016/j.jconrel.2011.07.014. PubMed DOI

Zhang C., Qineng P., Zhang H. Self-assembly and characterization of paclitaxel-loaded N-octyl-O-sulfate chitosan micellar system. Colloids Surf. B Biointerfaces. 2004;39:69–75. doi: 10.1016/j.colsurfb.2004.09.002. PubMed DOI

Dragan E.S., Ghiorghita C.A., Dinu M.V., Duceac I.A., Coseri S. Fabrication of self-antibacterial chitosan/oxidized starch polyelectrolyte complex sponges for controlled delivery of curcumin. Food Hydrocoll. 2023;135:108147. doi: 10.1016/j.foodhyd.2022.108147. DOI

Mattu C., Li R., Ciardelli G. Chitosan nanoparticles as therapeutic protein nanocarriers: The effect of pH on particle formation and encapsulation efficiency. Polym. Composites. 2013;34:1538–1545. doi: 10.1002/pc.22415. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...