Influence of doxorubicin on model cell membrane properties: insights from in vitro and in silico studies
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
28740256
PubMed Central
PMC5524714
DOI
10.1038/s41598-017-06445-z
PII: 10.1038/s41598-017-06445-z
Knihovny.cz E-zdroje
- MeSH
- buněčná membrána chemie účinky léků metabolismus MeSH
- cholesterol chemie MeSH
- doxorubicin chemie farmakologie MeSH
- fluidita membrány účinky léků MeSH
- membrány umělé MeSH
- molekulární modely MeSH
- P-glykoprotein metabolismus MeSH
- počítačová simulace MeSH
- simulace molekulární dynamiky MeSH
- spektrofotometrie ultrafialová MeSH
- výpočetní biologie metody MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- cholesterol MeSH
- doxorubicin MeSH
- membrány umělé MeSH
- P-glykoprotein MeSH
Despite doxorubicin being commonly used in chemotherapy there still remain significant holes in our knowledge regarding its delivery efficacy and an observed resistance mechanism that is postulated to involve the cell membrane. One possible mechanism is the efflux by protein P-gp, which is found predominantly in cholesterol enriched domains. Thereby, a hypothesis for the vulnerability of doxorubicin to efflux through P-gp is its enhanced affinity for the ordered cholesterol rich regions of the plasma membrane. Thus, we have studied doxorubicin's interaction with model membranes in a cholesterol rich, ordered environment and in liquid-disordered cholesterol poor environment. We have combined three separate experimental protocols: UV-Vis spectrophotometry, fluorescence quenching and steady-state anisotropy and computational molecular dynamics modeling. Our results show that the presence of cholesterol induces a change in membrane structure and doesn't impair doxorubicin's membrane partitioning, but reduces drug's influence on membrane fluidity without directly interacting with it. It is thus possible that the resistance mechanism that lowers the efficacy of doxorubicin, results from an increased density in membrane regions where the efflux proteins are present. This work represents a successful approach, combining experimental and computational studies of membrane based systems to unveil the behavior of drugs and candidate drug molecules.
Zobrazit více v PubMed
Minotti G, Menna P, Salvatorelli E, Cairo G, Gianni L. Anthracyclines: molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacol. Rev. 2004;56:185–229. doi: 10.1124/pr.56.2.6. PubMed DOI
Triton TR, Yee G. The anticancer agent adriamycin can be actively cytotoxic without entering cells. Science. 1982;217:248–250. doi: 10.1126/science.7089561. PubMed DOI
Tritton, T. R. & Hickman, J. A. In Experimental and Clinical Progress in Cancer Chemotherapy24, 81–131 (Springer US, 1985).
Escribá PV, et al. Membranes: a meeting point for lipids, proteins and therapies. J. Cell. Mol. Med. 2008;12:829–875. doi: 10.1111/j.1582-4934.2008.00281.x. PubMed DOI PMC
Escribá PV, et al. Role of lipid polymorphism in G protein-membrane interactions: nonlamellar-prone phospholipids and peripheral protein binding to membranes. Proceedings of the National Academy of Sciences. 1997;94:11375–11380. doi: 10.1073/pnas.94.21.11375. PubMed DOI PMC
Escribá PV, Sastre M, García-Sevilla JA. Disruption of cellular signaling pathways by daunomycin through destabilization of nonlamellar membrane structures. Proceedings of the National Academy of Sciences. 1995;92:7595–7599. doi: 10.1073/pnas.92.16.7595. PubMed DOI PMC
Giorgione J, Epand RM, Buda C, Farkas T. Role of phospholipids containing docosahexaenoyl chains in modulating the activity of protein kinase C. Proceedings of the National Academy of Sciences. 1995;92:9767–9770. doi: 10.1073/pnas.92.21.9767. PubMed DOI PMC
London E. Insights into lipid raft structure and formation from experiments in model membranes. Curr. Opin. Struct. Biol. 2002;12:480–486. doi: 10.1016/S0959-440X(02)00351-2. PubMed DOI
George KS, Wu S. Lipid raft: A floating island of death or survival. Toxicol. Appl. Pharmacol. 2012;259:311–319. doi: 10.1016/j.taap.2012.01.007. PubMed DOI PMC
Holthuis JCM, van Meer G, Huitema K. Lipid microdomains, lipid translocation and the organization of intracellular membrane transport (Review) Molecular Membrane Biology. 2003;20:231–241. doi: 10.1080/0988768031000100768. PubMed DOI
Eckford PDW, Sharom FJ. Interaction of the P-glycoprotein multidrug efflux pump with cholesterol: effects on ATPase activity, drug binding and transport. Biochemistry. 2008;47:13686–13698. doi: 10.1021/bi801409r. PubMed DOI
Broxterman HJ, Giaccone G, Lankelma J. Multidrug resistance proteins and other drug transport-related resistance to natural product agents. Curr Opin Oncol. 1995;7:532–540. doi: 10.1097/00001622-199511000-00011. PubMed DOI
Gottesman MM, Fojo T, Bates SE. Multidrug Resistance In Cancer: Role of Atp-Dependent Transporters. Nat. Rev. Cancer. 2002;2:48–58. doi: 10.1038/nrc706. PubMed DOI
Shen F, et al. Quantitation of doxorubicin uptake, efflux, and modulation of multidrug resistance (MDR) in MDR human cancer cells. J. Pharmacol. Exp. Ther. 2008;324:95–102. doi: 10.1124/jpet.107.127704. PubMed DOI
Seydel, J. K. & Wiese, M. Drug-Membrane Interactions: Analysis. (Drug Distribution, 2002).
Lakowicz, J. R. Quenching of Fluorescence, in Principles of Fluorescence Spectroscopy. (Springer, 2006).
Kaiser RD, London E. Location of diphenylhexatriene (DPH) and its derivatives within membranes: comparison of different fluorescence quenching analyses of membrane depth. Biochemistry. 1998;37:8180–8190. doi: 10.1021/bi980064a. PubMed DOI
Illinger D, et al. A comparison of the fluorescence properties of TMA-DPH as a probe for plasma membrane and for endocytic membrane. Biochim. Biophys. Acta. 1995;1239:58–66. doi: 10.1016/0005-2736(95)00135-P. PubMed DOI
Lakowicz, J. R. Principles of Fluorescence Spectroscopy. 366–375 (Springer, 2006).
Lúcio M, Ferreira H, Lima JLFC, Reis S. Interactions between oxicams and membrane bilayers: an explanation for their different COX selectivity. Med Chem. 2006;2:447–456. doi: 10.2174/157340606778250199. PubMed DOI
Nunes C, et al. Lipid-drug interaction: biophysical effects of tolmetin on membrane mimetic systems of different dimensionality. J. Phys Chem. B. 2011;115:12615–12623. doi: 10.1021/jp206013z. PubMed DOI
Barenholz Y. Sphingomyelin and cholesterol: from membrane biophysics and rafts to potential medical applications. Subcell. Biochem. 2004;37:167–215. doi: 10.1007/978-1-4757-5806-1_5. PubMed DOI
Seelig A, Landwojtowicz E. Structure-activity relationship of P-glycoprotein substrates and modifiers. Eur. J. Pharm. Sci. 2000;12:31–40. doi: 10.1016/S0928-0987(00)00177-9. PubMed DOI
Orlowski S, Martin S, Escargueil A. P-glycoprotein and ‘lipid rafts’: some ambiguous mutual relationships (floating on them, building them or meeting them by chance?) Cellular and Molecular Life Sciences. 2006;63:1038–1059. doi: 10.1007/s00018-005-5554-9. PubMed DOI PMC
Modok S, Heyward C, Callaghan R. P-glycoprotein retains function when reconstituted into a sphingolipid- and cholesterol-rich environment. J. Lipid Res. 2004;45:1910–1918. doi: 10.1194/jlr.M400220-JLR200. PubMed DOI
Yacoub TJ, Reddy AS, Szleifer I. Structural effects and translocation of doxorubicin in a DPPC/Chol bilayer: the role of cholesterol. Biophys. J. 2011;101:378–385. doi: 10.1016/j.bpj.2011.06.015. PubMed DOI PMC
Seelig J. Deuterium magnetic resonance: theory and application to lipid membranes. Quarterly Reviews of Biophysics. 2009;10:353–418. doi: 10.1017/S0033583500002948. PubMed DOI
Róg T, Pasenkiewicz-Gierula M, Vattulainen I, Karttunen M. Ordering effects of cholesterol and its analogues. Biochimica et Biophysica Acta (BBA) - Biomembranes. 2009;1788:97–121. doi: 10.1016/j.bbamem.2008.08.022. PubMed DOI
c WK, Telenius J, Khandelia H. Molecular dynamics simulations of the interactions of medicinal plant extracts and drugs with lipid bilayer membranes. FEBS J. 2013;280:2785–2805. doi: 10.1111/febs.12286. PubMed DOI
Wydro PL. Sphingomyelin/phosphatidylcholine/cholesterol monolayers–analysis of the interactions in model membranes and brewster angle microscopy experiments. Colloids Surf., B. 2012;93:174–179. doi: 10.1016/j.colsurfb.2011.12.035. PubMed DOI
Nunes C, Lopes D, Pinheiro M, Pereira-Leite C, Reis S. In vitro assessment of NSAIDs-membrane interactions: significance for pharmacological actions. Pharm. Res. 2013;30:2097–2107. doi: 10.1007/s11095-013-1066-8. PubMed DOI
Pereira-Leite C, Nunes C, Lima JLFC, Reis S, Lúcio M. Interaction of celecoxib with membranes: the role of membrane biophysics on its therapeutic and toxic effects. J. Phys Chem. B. 2012;116:13608–13617. doi: 10.1021/jp304037v. PubMed DOI
Magalhães LM, et al. High-throughput microplate assay for the determination of drug partition coefficients. Nat Protoc. 2010;5:1823–1830. doi: 10.1038/nprot.2010.137. PubMed DOI
Brittes J, Lúcio M, Nunes C, Lima JLFC, Reis S. Effects of resveratrol on membrane biophysical properties: relevance for its pharmacological effects. Chem. Phys. Lipids. 2010;163:747–754. doi: 10.1016/j.chemphyslip.2010.07.004. PubMed DOI
Coutinho A, Prieto M. Ribonuclease T1 and alcohol dehydrogenase fluorescence quenching by acrylamide: A laboratory experiment for undergraduate students. Journal of Chemical Education. 1993;70:425. doi: 10.1021/ed070p425. DOI
Jämbeck JPM, Lyubartsev APA. Extension and Further Validation of an All-Atomistic Force Field for Biological Membranes. J Chem Theory Comput. 2012;8:2938–2948. doi: 10.1021/ct300342n. PubMed DOI
Jämbeck JPM, Lyubartsev AP. Another Piece of the Membrane Puzzle: Extending Slipids Further. J Chem Theory Comput. 2012;9:774–784. doi: 10.1021/ct300777p. PubMed DOI
Jämbeck JPM, Lyubartsev AP. Derivation and systematic validation of a refined all-atom force field for phosphatidylcholine lipids. J. Phys Chem. B. 2012;116:3164–3179. doi: 10.1021/jp212503e. PubMed DOI PMC
Hess, B., Bekker, H. & Berendsen, H. LINCS: a linear constraint solver for molecular simulations. Journal of computational (1997).
Nosé S. A unified formulation of the constant temperature molecular dynamics methods. The Journal of Chemical Physics. 1984;81:511–519. doi: 10.1063/1.447334. DOI
Hoover WG. Canonical dynamics: Equilibrium phase-space distributions. Phys. Rev. A. 1985;31:1695–1697. doi: 10.1103/PhysRevA.31.1695. PubMed DOI
Parrinello M, Rahman A. Polymorphic transitions in single crystals: A new molecular dynamics method. Journal of Applied Physics. 1981;52:7182–7190. doi: 10.1063/1.328693. DOI
Essmann U, et al. A smooth particle mesh Ewald method. The Journal of Chemical Physics. 1995;103:8577–8593. doi: 10.1063/1.470117. DOI
Pronk S, et al. GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics. 2013;29:845–854. doi: 10.1093/bioinformatics/btt055. PubMed DOI PMC
Humphrey W, Dalke A, Schulten K. VMD: Visual molecular dynamics. Journal of Molecular Graphics. 1996;14:33–38. doi: 10.1016/0263-7855(96)00018-5. PubMed DOI
Bayly CI, Cieplak P, Cornell W, Kollman PA. A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: the RESP model. J. Phys Chem. 2002;97:10269–10280. doi: 10.1021/j100142a004. DOI
Wang J, Wang W, Kollman PA, Case DA. Automatic atom type and bond type perception in molecular mechanical calculations. Journal of Molecular Graphics and Modelling. 2006;25:247–260. doi: 10.1016/j.jmgm.2005.12.005. PubMed DOI
Whey Protein Isolate-Chitosan PolyElectrolyte Nanoparticles as a Drug Delivery System