Membrane Permeability and Responsiveness Drive Performance: Linking Structural Features with the Antitumor Effectiveness of Doxorubicin-Loaded Stimuli-Triggered Polymersomes
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
38917475
PubMed Central
PMC11238342
DOI
10.1021/acs.biomac.4c00282
Knihovny.cz E-zdroje
- MeSH
- akrylamidy chemie farmakologie MeSH
- doxorubicin * farmakologie chemie MeSH
- koncentrace vodíkových iontů MeSH
- lidé MeSH
- myši MeSH
- nádorové buněčné linie MeSH
- nosiče léků chemie MeSH
- permeabilita buněčné membrány účinky léků MeSH
- polymery chemie farmakologie MeSH
- protinádorová antibiotika farmakologie chemie MeSH
- protinádorové látky farmakologie chemie MeSH
- reaktivní formy kyslíku metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- akrylamidy MeSH
- doxorubicin * MeSH
- nosiče léků MeSH
- polymery MeSH
- protinádorová antibiotika MeSH
- protinádorové látky MeSH
- reaktivní formy kyslíku MeSH
The permeability and responsiveness of polymer membranes are absolutely relevant in the design of polymersomes for cargo delivery. Accordingly, we herein correlate the structural features, permeability, and responsiveness of doxorubicin-loaded (DOX-loaded) nonresponsive and stimuli-responsive polymersomes with their in vitro and in vivo antitumor performance. Polymer vesicles were produced using amphiphilic block copolymers containing a hydrophilic poly[N-(2-hydroxypropyl)methacrylamide] (PHPMA) segment linked to poly[N-(4-isopropylphenylacetamide)ethyl methacrylate] (PPPhA, nonresponsive block), poly[4-(4,4,5,5-tetra-methyl-1,3,2-dioxaborolan-2-yl)benzyl methacrylate] [PbAPE, reactive oxygen species (ROS)-responsive block], or poly[2-(diisopropylamino)ethyl methacrylate] (PDPA, pH-responsive block). The PDPA-based polymersomes demonstrated outstanding biological performance with antitumor activity notably enhanced compared to their counterparts. We attribute this behavior to a fast-triggered DOX release in acidic tumor environments as induced by pH-responsive polymersome disassembly at pH < 6.8. Possibly, an insufficient ROS concentration in the selected tumor model attenuates the rate of ROS-responsive vesicle degradation, whereas the nonresponsive nature of the PPPhA block remarkably impacts the performance of such potential nanomedicines.
Centro de Ciências Naturais e Humanas Universidade Federal do ABC Santo Andre 09280 560 Brazil
Institute of Macromolecular Chemistry Czech Academy of Sciences Prague 162 00 Czech Republic
Zobrazit více v PubMed
Tanner P.; Baumann P.; Enea R.; Onaca O.; Palivan C.; Meier W. Polymeric Vesicles: From Drug Carriers to Nanoreactors and Artificial Organelles. Acc. Chem. Res. 2011, 44 (10), 1039–1049. 10.1021/ar200036k. PubMed DOI
Maffeis V.; Heuberger L.; Nikoletić A.; Schoenenberger C. A.; Palivan C. G. Synthetic Cells Revisited: Artificial Cells Construction Using Polymeric Building Blocks. Adv. Sci. 2024, 11, 2305837.10.1002/advs.202305837. PubMed DOI PMC
Che H.; van Hest J. C. M. Adaptive Polymersome Nanoreactors. ChemNanoMat 2019, 5 (9), 1092–1109. 10.1002/cnma.201900245. DOI
Langowska K.; Palivan C. G.; Meier W. Polymer Nanoreactors Shown to Produce and Release Antibiotics Locally. Chem. Commun. 2013, 49 (2), 128–130. 10.1039/C2CC36345C. PubMed DOI
Kim K. T.; Cornelissen J. J. L. M.; Nolte R. J. M.; Van Hest J. C. M. A Polymersome Nanoreactor with Controllable Permeability Induced by Stimuli-Responsive Block Copolymers. Adv. Mater. 2009, 21 (27), 2787–2791. 10.1002/adma.200900300. DOI
Gaitzsch J.; Appelhans D.; Wang L.; Battaglia G.; Voit B. Synthetic Bio-Nanoreactor: Mechanical and Chemical Control of Polymersome Membrane Permeability. Angew. Chem., Int. Ed. 2012, 51 (18), 4448–4451. 10.1002/anie.201108814. PubMed DOI
Albuquerque L. J. C.; Sincari V.; Jager A.; Konefał R.; Panek J.; Cernoch P.; Pavlova E.; Stepanek P.; Giacomelli F. C.; Jager E. Microfluidic-Assisted Engineering of Quasi-Monodisperse Ph-Responsive Polymersomes toward Advanced Platforms for the Intracellular Delivery of Hydrophilic Therapeutics. Langmuir 2019, 35 (25), 8363–8372. 10.1021/acs.langmuir.9b01009. PubMed DOI
Rideau E.; Dimova R.; Schwille P.; Wurm F. R.; Landfester K. Liposomes and Polymersomes: A Comparative Review towards Cell Mimicking. Chem. Soc. Rev. 2018, 47 (23), 8572–8610. 10.1039/C8CS00162F. PubMed DOI
Moreno S.; Hübner H.; Effenberg C.; Boye S.; Ramuglia A.; Schmitt D.; Voit B.; Weidinger I. M.; Gallei M.; Appelhans D. Redox- and PH-Responsive Polymersomes with Ferrocene Moieties Exhibiting Peroxidase-like, Chemoenzymatic Activity and H2O2-Responsive Release Behavior. Biomacromolecules 2022, 23 (11), 4655–4667. 10.1021/acs.biomac.2c00901. PubMed DOI
Kim J.; Kim K. T. Polymersome-Based Modular Nanoreactors with Size-Selective Transmembrane Permeability. ACS Appl. Mater. Interfaces 2020, 12 (20), 23502–23513. 10.1021/acsami.0c05637. PubMed DOI
Zhu Y.; Cao S.; Huo M.; van Hest J. C. M.; Che H. Recent Advances in Permeable Polymersomes: Fabrication, Responsiveness, and Applications. Chem. Sci. 2023, 14, 7411–7437. 10.1039/d3sc01707a. PubMed DOI PMC
Bellomo E. G.; Wyrsta M. D.; Pakstis L.; Pochan D. J.; Deming T. J. Stimuli-Responsive Polypeptide Vesicles by Conformation-Specific Assembly. Nat. Mater. 2004, 3 (4), 244–248. 10.1038/nmat1093. PubMed DOI
Hu X.; Zhang Y.; Xie Z.; Jing X.; Bellotti A.; Gu Z. Stimuli-Responsive Polymersomes for Biomedical Applications. Biomacromolecules 2017, 18 (3), 649–673. 10.1021/acs.biomac.6b01704. PubMed DOI
Thambi T.; Park J. H.; Lee D. S. Stimuli-Responsive Polymersomes for Cancer Therapy. Biomater. Sci. 2016, 4 (1), 55–69. 10.1039/C5BM00268K. PubMed DOI
Liu G.; Tan J.; Cen J.; Zhang G.; Hu J.; Liu S. Oscillating the Local Milieu of Polymersome Interiors via Single Input-Regulated Bilayer Crosslinking and Permeability Tuning. Nat. Commun. 2022, 13 (1), 585–612. 10.1038/s41467-022-28227-6. PubMed DOI PMC
Wang X.; Yao C.; Zhang G.; Liu S. Regulating Vesicle Bilayer Permeability and Selectivity via Stimuli-Triggered Polymersome-to-PICsome Transition. Nat. Commun. 2020, 11 (1), 1524–1613. 10.1038/s41467-020-15304-x. PubMed DOI PMC
Liu J.; Jia B.; Li Z.; Li W. Reactive Oxygen Species-Responsive Polymer Drug Delivery Systems. Front. Bioeng. Biotechnol. 2023, 11, 1115603.10.3389/fbioe.2023.1115603. PubMed DOI PMC
Corbet C.; Feron O. Tumour Acidosis: From the Passenger to the Driver’s Seat. Nat. Rev. Cancer 2017, 17 (10), 577–593. 10.1038/nrc.2017.77. PubMed DOI
Joseph A.; Contini C.; Cecchin D.; Nyberg S.; Ruiz-Perez L.; Gaitzsch J.; Fullstone G.; Tian X.; Azizi J.; Preston J.; Volpe G.; Battaglia G. Chemotactic Synthetic Vesicles: Design and Applications in Blood-Brain Barrier Crossing. Sci. Adv. 2017, 3 (8), e170036210.1126/sciadv.1700362. PubMed DOI PMC
Li Y.; Zhao T.; Wang C.; Lin Z.; Huang G.; Sumer B. D.; Gao J. Molecular Basis of Cooperativity in PH-Triggered Supramolecular Self-Assembly. Nat. Commun. 2016, 7 (1), 13214–13219. 10.1038/ncomms13214. PubMed DOI PMC
Giacomelli F. C.; Stepánek P.; Giacomelli C.; Schmidt V.; Jäger E.; Jäger A.; Ulbrich K. PH-Triggered Block Copolymer Micelles Based on a PH-Responsive PDPA (Poly[2-(Diisopropylamino)Ethyl Methacrylate]) Inner Core and a PEO (Poly(Ethylene Oxide)) Outer Shell as a Potential Tool for the Cancer Therapy. Soft Matter 2011, 7 (19), 9316–9325. 10.1039/c1sm05992k. DOI
Gao F.; Xiong Z. Reactive Oxygen Species Responsive Polymers for Drug Delivery Systems. Front. Chem. 2021, 9, 649048.10.3389/fchem.2021.649048. PubMed DOI PMC
Einfalt T.; Witzigmann D.; Edlinger C.; Sieber S.; Goers R.; Najer A.; Spulber M.; Onaca-Fischer O.; Huwyler J.; Palivan C. G. Biomimetic Artificial Organelles with in Vitro and in Vivo Activity Triggered by Reduction in Microenvironment. Nat. Commun. 2018, 9 (1), 1127–1212. 10.1038/s41467-018-03560-x. PubMed DOI PMC
Zheng M.; Liu Y.; Wang Y.; Zhang D.; Zou Y.; Ruan W.; Yin J.; Tao W.; Park J. B.; Shi B. ROS-Responsive Polymeric SiRNA Nanomedicine Stabilized by Triple Interactions for the Robust Glioblastoma Combinational RNAi Therapy. Adv. Mater. 2019, 31 (37), 1903277.10.1002/adma.201903277. PubMed DOI
Deng Z.; Qian Y.; Yu Y.; Liu G.; Hu J.; Zhang G.; Liu S. Engineering Intracellular Delivery Nanocarriers and Nanoreactors from Oxidation-Responsive Polymersomes via Synchronized Bilayer Cross-Linking and Permeabilizing Inside Live Cells. J. Am. Chem. Soc. 2016, 138 (33), 10452–10466. 10.1021/jacs.6b04115. PubMed DOI
Matoori S.; Leroux J. C. Twenty-Five Years of Polymersomes: Lost in Translation?. Mater. Horiz. 2020, 7 (5), 1297–1309. 10.1039/C9MH01669D. DOI
Jäger E.; Humajová J.; Dölen Y.; Kučka J.; Jäger A.; Konefał R.; Pankrác J.; Pavlova E.; Heizer T.; Šefc L.; Hrubý M.; Figdor C. G.; Verdoes M. Enhanced Antitumor Efficacy through an “AND Gate” Reactive Oxygen-Species-Dependent PH-Responsive Nanomedicine Approach. Adv. Healthcare Mater. 2021, 10 (13), 2100304.10.1002/adhm.202100304. PubMed DOI
Jäger E.; Sincari V.; Albuquerque L. J. C.; Jäger A.; Humajova J.; Kucka J.; Pankrac J.; Paral P.; Heizer T.; Janouskova O.; Konefał R.; Pavlova E.; Sedlacek O.; Giacomelli F. C.; Pouckova P.; Sefc L.; Stepanek P.; Hruby M. Reactive Oxygen Species (ROS)-Responsive Polymersomes with Site-Specific Chemotherapeutic Delivery into Tumors via Spacer Design Chemistry. Biomacromolecules 2020, 21 (4), 1437–1449. 10.1021/acs.biomac.9b01748. PubMed DOI
de Oliveira F. A.; Batista C. C. d. S.; Černoch P.; Sincari V.; Jäger A.; Jäger E.; Giacomelli F. C. Role of Membrane Features on the Permeability Behavior of Polymersomes and the Potential Impacts on Drug Encapsulation and Release. Biomacromolecules 2023, 24 (5), 2291–2300. 10.1021/acs.biomac.3c00162. PubMed DOI
Hassan P. A.; Rana S.; Verma G. Making Sense of Brownian Motion: Colloid Characterization by Dynamic Light Scattering. Langmuir 2015, 31, 3–12. 10.1021/la501789z. PubMed DOI
Kohlbrecher J.; Breßler I.; Barty A. Updates in SASfit for Fitting Analytical Expressions and Numerical Models to Small-Angle Scattering Patterns. J. Appl. Crystallogr. 2022, 55, 1677–1688. 10.1107/S1600576722009037. PubMed DOI PMC
Albuquerque L. J. C.; Sincari V.; Jäger A.; Kucka J.; Humajova J.; Pankrac J.; Paral P.; Heizer T.; Janouškova O.; Davidovich I.; Talmon Y.; Pouckova P.; Štěpánek P.; Sefc L.; Hruby M.; Giacomelli F. C.; Jäger E. PH-Responsive Polymersome-Mediated Delivery of Doxorubicin into Tumor Sites Enhances the Therapeutic Efficacy and Reduces Cardiotoxic Effects. J. Controlled Release 2021, 332, 529–538. 10.1016/j.jconrel.2021.03.013. PubMed DOI
de Oliveira F. A.; Albuquerque L. J. C.; Riske K. A.; Jäger E.; Giacomelli F. C. Outstanding Protein-Repellent Feature of Soft Nanoparticles Based on Poly(N-(2-Hydroxypropyl) Methacrylamide) Outer Shells. J. Colloid Interface Sci. 2020, 574, 260–271. 10.1016/j.jcis.2020.04.048. PubMed DOI
Alberg I.; Kramer S.; Schinnerer M.; Hu Q.; Seidl C.; Leps C.; Drude N.; Möckel D.; Rijcken C.; Lammers T.; Diken M.; Maskos M.; Morsbach S.; Landfester K.; Tenzer S.; Barz M.; Zentel R. Polymeric Nanoparticles with Neglectable Protein Corona. Small 2020, 16 (18), 1907574.10.1002/smll.201907574. PubMed DOI
Abdelmohsen L. K. E. A.; Rikken R. S. M.; Christianen P. C. M.; van Hest J. C. M.; Wilson D. A. Shape Characterization of Polymersome Morphologies via Light Scattering Techniques. Polymer 2016, 107, 445–449. 10.1016/j.polymer.2016.06.067. DOI
Fu J.; Li X. Y.; Ng D. K. P.; Wu C. Encapsulation of Phthalocyanines in Biodegradable Poly(Sebacic Anhydride) Nanoparticles. Langmuir 2002, 18 (10), 3843–3847. 10.1021/la011764a. DOI
Patterson J. P.; Robin M. P.; Chassenieux C.; Colombani O.; O’Reilly R. K. The Analysis of Solution Self-Assembled Polymeric Nanomaterials. Chem. Soc. Rev. 2014, 43 (8), 2412–2425. 10.1039/C3CS60454C. PubMed DOI
Černoch P.; Jager A.; Černochová Z.; Sincari V.; Albuquerque L. J. C.; Konefal R.; Pavlova E.; Giacomelli F. C.; Jager E. Engineering of PH-Triggered Nanoplatforms Based on Novel Poly(2-Methyl-2-Oxazoline)-: B-Poly[2-(Diisopropylamino)Ethyl Methacrylate] Diblock Copolymers with Tunable Morphologies for Biomedical Applications. Polym. Chem. 2021, 12 (19), 2868–2880. 10.1039/d1py00141h. DOI
Alves A. C.; Magarkar A.; Horta M.; Lima J. L. F. C.; Bunker A.; Nunes C.; Reis S. Influence of Doxorubicin on Model Cell Membrane Properties: Insights from in Vitro and in Silico Studies. Sci. Rep. 2017, 7 (1), 6343.10.1038/s41598-017-06445-z. PubMed DOI PMC
Jin Z. H.; Jin M. J.; Jiang C. G.; Yin X. Z.; Jin S. X.; Quan X. Q.; Gao Z. G. Evaluation of Doxorubicin-Loaded PH-Sensitive Polymeric Micelle Release from Tumor Blood Vessels and Anticancer Efficacy Using a Dorsal Skin-Fold Window Chamber Model. Acta Pharmacol. Sin. 2014, 35 (6), 839–845. 10.1038/aps.2014.12. PubMed DOI PMC
McRae Page S.; Henchey E.; Chen X.; Schneider S.; Emrick T. Efficacy of PolyMPC-DOX Prodrugs in 4T1 Tumor-Bearing Mice. Mol. Pharm. 2014, 11 (5), 1715–1720. 10.1021/mp500009r. PubMed DOI PMC
Podyacheva E. Y.; Kushnareva E. A.; Karpov A. A.; Toropova Y. G. Analysis of Models of Doxorubicin-Induced Cardiomyopathy in Rats and Mice. A Modern View from the Perspective of the Pathophysiologist and the Clinician. Front. Pharmacol 2021, 12, 670479.10.3389/fphar.2021.670479. PubMed DOI PMC
Olson L. E.; Bedja D.; Alvey S. J.; Cardounel A. J.; Gabrielson K. L.; Reeves R. H. Protection from Doxorubicin-Induced Cardiac Toxicity in Mice with a Null Allele of Carbonyl Reductase 11. Cancer Res. 2003, 63, 6602. PubMed
Poondru S.; Parchment R. E.; Purohit V.; Lorusso P.; Horwitz J. P.; Hazeldine S. T.; Polin L.; Corbett T.; Jasti B. R. Lack of in Vitro-in Vivo Correlation of a Novel Investigational Anticancer Agent, SH 30. Invest. New Drugs 2002, 20, 23–33. 10.1023/a:1014457510073. PubMed DOI