Membrane Permeability and Responsiveness Drive Performance: Linking Structural Features with the Antitumor Effectiveness of Doxorubicin-Loaded Stimuli-Triggered Polymersomes

. 2024 Jul 08 ; 25 (7) : 4192-4202. [epub] 20240625

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38917475

The permeability and responsiveness of polymer membranes are absolutely relevant in the design of polymersomes for cargo delivery. Accordingly, we herein correlate the structural features, permeability, and responsiveness of doxorubicin-loaded (DOX-loaded) nonresponsive and stimuli-responsive polymersomes with their in vitro and in vivo antitumor performance. Polymer vesicles were produced using amphiphilic block copolymers containing a hydrophilic poly[N-(2-hydroxypropyl)methacrylamide] (PHPMA) segment linked to poly[N-(4-isopropylphenylacetamide)ethyl methacrylate] (PPPhA, nonresponsive block), poly[4-(4,4,5,5-tetra-methyl-1,3,2-dioxaborolan-2-yl)benzyl methacrylate] [PbAPE, reactive oxygen species (ROS)-responsive block], or poly[2-(diisopropylamino)ethyl methacrylate] (PDPA, pH-responsive block). The PDPA-based polymersomes demonstrated outstanding biological performance with antitumor activity notably enhanced compared to their counterparts. We attribute this behavior to a fast-triggered DOX release in acidic tumor environments as induced by pH-responsive polymersome disassembly at pH < 6.8. Possibly, an insufficient ROS concentration in the selected tumor model attenuates the rate of ROS-responsive vesicle degradation, whereas the nonresponsive nature of the PPPhA block remarkably impacts the performance of such potential nanomedicines.

Zobrazit více v PubMed

PubMed DOI

PubMed DOI PMC

Che H.; van Hest J. C. M. Adaptive Polymersome Nanoreactors. ChemNanoMat 2019, 5 (9), 1092–1109. 10.1002/cnma.201900245. DOI

PubMed DOI

Kim K. T.; Cornelissen J. J. L. M.; Nolte R. J. M.; Van Hest J. C. M. A Polymersome Nanoreactor with Controllable Permeability Induced by Stimuli-Responsive Block Copolymers. Adv. Mater. 2009, 21 (27), 2787–2791. 10.1002/adma.200900300. DOI

PubMed DOI

PubMed DOI

PubMed DOI

PubMed DOI

PubMed DOI

PubMed DOI PMC

PubMed DOI

PubMed DOI

PubMed DOI

PubMed DOI PMC

PubMed DOI PMC

PubMed DOI PMC

PubMed DOI

PubMed DOI PMC

PubMed DOI PMC

Giacomelli F. C.; Stepánek P.; Giacomelli C.; Schmidt V.; Jäger E.; Jäger A.; Ulbrich K. PH-Triggered Block Copolymer Micelles Based on a PH-Responsive PDPA (Poly[2-(Diisopropylamino)Ethyl Methacrylate]) Inner Core and a PEO (Poly(Ethylene Oxide)) Outer Shell as a Potential Tool for the Cancer Therapy. Soft Matter 2011, 7 (19), 9316–9325. 10.1039/c1sm05992k. DOI

PubMed DOI PMC

PubMed DOI PMC

PubMed DOI

PubMed DOI

Matoori S.; Leroux J. C. Twenty-Five Years of Polymersomes: Lost in Translation?. Mater. Horiz. 2020, 7 (5), 1297–1309. 10.1039/C9MH01669D. DOI

PubMed DOI

PubMed DOI

PubMed DOI

PubMed DOI

PubMed DOI PMC

PubMed DOI

PubMed DOI

PubMed DOI

Abdelmohsen L. K. E. A.; Rikken R. S. M.; Christianen P. C. M.; van Hest J. C. M.; Wilson D. A. Shape Characterization of Polymersome Morphologies via Light Scattering Techniques. Polymer 2016, 107, 445–449. 10.1016/j.polymer.2016.06.067. DOI

Fu J.; Li X. Y.; Ng D. K. P.; Wu C. Encapsulation of Phthalocyanines in Biodegradable Poly(Sebacic Anhydride) Nanoparticles. Langmuir 2002, 18 (10), 3843–3847. 10.1021/la011764a. DOI

PubMed DOI

Černoch P.; Jager A.; Černochová Z.; Sincari V.; Albuquerque L. J. C.; Konefal R.; Pavlova E.; Giacomelli F. C.; Jager E. Engineering of PH-Triggered Nanoplatforms Based on Novel Poly(2-Methyl-2-Oxazoline)-: B-Poly[2-(Diisopropylamino)Ethyl Methacrylate] Diblock Copolymers with Tunable Morphologies for Biomedical Applications. Polym. Chem. 2021, 12 (19), 2868–2880. 10.1039/d1py00141h. DOI

PubMed DOI PMC

PubMed DOI PMC

PubMed DOI PMC

PubMed DOI PMC

PubMed

PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat...

Možnosti archivace

Nahrávání dat...